Kamran Ullah Khan, YANG Jian, ZHANG Weijie. Unsupervised Classification of Polarimetric SAR Images by Gamma-Correction of Features Using Self Organizing Map[J]. Chinese Journal of Electronics, 2009, 18(4): 767-770.
Citation: Kamran Ullah Khan, YANG Jian, ZHANG Weijie. Unsupervised Classification of Polarimetric SAR Images by Gamma-Correction of Features Using Self Organizing Map[J]. Chinese Journal of Electronics, 2009, 18(4): 767-770.

Unsupervised Classification of Polarimetric SAR Images by Gamma-Correction of Features Using Self Organizing Map

  • Received Date: 2007-10-01
  • Rev Recd Date: 2009-03-01
  • Publish Date: 2009-11-25
  • In this paper, an unsupervised method isproposed for target classification in a polarimetric SARimage, based on the Gamma correction and the Self organizing map (SOM). After the gamma correction of thefeatures including the elements of the coherency matrixand its eigenvalues, the coeffcients of Freeman's decomposition and the polarization entropy, the authors use a SOMbased neural network to classify a polarimetric SAR imageinto different clusters. Using the AirSAR data, the authorsdemonstrate the effectiveness of the proposed method.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (517) PDF downloads(1037) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return