“A Convex Approach for Local Statistics Based Region Segmentation,” Chinese Journal of Electronics, vol. 21, no. 4, pp. 623-626, 2012,
Citation: “A Convex Approach for Local Statistics Based Region Segmentation,” Chinese Journal of Electronics, vol. 21, no. 4, pp. 623-626, 2012,

A Convex Approach for Local Statistics Based Region Segmentation

  • Received Date: 2011-03-01
  • Rev Recd Date: 2012-04-01
  • Publish Date: 2012-10-25
  • A convex active contour model based on local image statistics is proposed in this paper. By assuming that the intensity distribution of the image pixels in a window is described by a Gaussian distribution, our model is able to segment images with intensity inhomogeneity. Due to the convexity of the proposed model, we introduce a dual formulation to solve the minimization problem and obtain a much efficient method. Experiments show that the segmentation results of the proposed method are similar to that of the non-convex method based on local statistics, but our method is much more efficient.
  • loading
  • U. Maulik, D. Chakraborty, “A novel semi-supervised SVM forpixel classification of remote sensing imagery”, Int. J. Mach.Learn. & Cyber., DOI: 10.1007/s13042-011-0059-3, 2011.
    Y. Tang, P. Yan, Y. Yuan, X. Li, “Single-image super-resolutionvia local learning”, Int. J. Mach. Learn. & Cyber., Vol.2, No.1,pp.15-23, 2011.
    J. Wu, S. Wang, F. Chung, “Positive and negative fuzzy rulesystem, extreme learning machine and image classification”, Int.J. Mach. Learn. & Cyber., Vol.2, No.4, pp.261-271, 2011.
    V. Caselles, R. Kimmel, G. Sapiro, “Geodesic active contours”,Int’l J. Comp. Vis., Vol.22, No.1, pp.1-79, 1997.
    M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active contourmodels”, Int’l J. Comp. Vis, Vol.1, pp.321-331, 1988.
    K. Zhang, S. Xu, W. Zhou, B. Liu, “Active contours based onimage laplacian fitting energy”, Chinese Journal of Electronics,Vol.18, No.2, pp.281-284, 2009.
    T.F. Chan, S. Esedoglu, M. Nikolova, “Algorithms for findingglobal minimizers of image segmentation and denoising models”,J. Appl. Math., Vol.66, No.5, pp.1632-1648, 2006.
    T.F. Chan, L. Vese, “Active contour without edges”, IEEETrans. Image Process., Vol.10, No.2, pp.266-277, 2001.
    N. He, P. Zhang, “Variational level set image segmentationmethod based on boundary and region information”, Acta ElectronicaSinica, Vol.37, No.10, pp.2215-2219, 2009. (in Chinese)
    Q. Wang, Z.K. Pan, W.B. Wei, Y. Wang, “Variational imagesegmentation on implicit surface using dual method”, Acta ElectronicaSinica, Vol.39, No.1, pp.207-212, 2011. (in Chinese)
    L. Zhang, L. Zhu, X. Mi, “Localized multi-channel level setsegmentation combined with gabor texture feature”, Acta ElectronicaSinica, Vol.39, No.7, pp.1569-1574, 2011. (in Chinese)
    D. Mumford, J. Shah, “Optimal approximation by piecewisesmooth function and associated variational problems”, Commun.Pur. Appl. Math., Vol.42, No.5, pp.577-685, 1989.
    C. Li, C.Y. Kao, J.C. Gore, Z. Ding, “Implicit active contoursdriven by local binary fitting energy”, CVPR, Minnesota, USA,pp.430-436, 2007.
    Y. Yang, C. Li, C. Kao, S. Osher, “Split bregman method forminimization of region-scalable fitting energy for image segmentation”,In International Symposium on Visual Computing, LasVegas, Nevada, USA, Vol.6454, pp.117-128, 2010.
    L.Wang, L. He, C. Li, “Active contours driven by local Gaussiandistribution fitting energy”, Signal Processing, Vol.89, No.12,pp.2435-2447, 2009.
    A. Chambolle, “An algorithm for total variation minimizationand applications”, J. Math. Imaging and Vis., Vol.20, No.1-2,pp.89-97, 2004.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (465) PDF downloads(1139) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint