Citation: | XU Chen, LI Min, SUN Xiaoli. An Edge-preserving Variational Method for Image Decomposition[J]. Chinese Journal of Electronics, 2013, 22(1): 109-113. |
L. Rudin, S. Osher and E. Fatemi, “Nonlinear total variationbased noise removal algorithms”, Physica D, Vol.60, pp.259-268, 1992.
|
Y. Meyer, “Oscillating patterns in image processing and nonlinearevolution equations”, University Lecture Series, Vol.22,Amer. Math. Soc., 2001.
|
A. Chambolle, “An algorithm for total variation minimizationand applications”, JMIV, Vol.20, pp.89-97, 2004.
|
J.F. Aujol and A. Chambolle, “Dual norms and image decompositionmodels”, International Journal on Computer Vision,Vol.63, No.1, pp.85-104, 2005.
|
Li Min and Feng Xiangchu, “Waveelt shrinkage and a newclass of variational models based on Besov spaces and negativeHilbert-Sobolev spaces”, Chinese Journal of Electronics,Vol.16, No.2, pp.276-280, 2007.
|
S. Teboul, L. Blanc-Feraud, G. Aubert and M. Barlaud, “Variationalapproach for edge-preserving regularization using coupledPDE’s”, IEEE Trans. Image Processing, Vol.7, No.3, pp.387-397, 1998.
|
P. Charbonnier, G. Aubert, L. Blanc-Feraud and M. Barlaud,“Two deterministic half-quadratic regularization algorithms forcomputed imaging”, IEEE Proc. 1st Int. Conf. Image Processing,Austin, TX, Vol.2, pp.168-172, 1994.
|
G. Aubert and P. Kornprobst, “Mathematical problems in imageprocessing-partial differential equations and the calculus ofvariations”, Springer, Applied Mathematical Sciences, 2006.
|
Tieyong Zeng and Michael K. Ng, “Correspondence-on the totalvariation dictionary model”, IEEE Trans. Image Processing,Vol.19, No.3, pp.821-825, 2010.
|
M. Nitzberg and T. Shiota, “Nonlinear image filtering with edgeand corner enhancement”, IEEE Trans. Pattern Anal. MachineIntell., Vol.17, pp.629-639, 1990.
|