Citation: | LEI Xiujuan, WU Shuang, GE Liang, ZHANG Aidong. Clustering PPI Data Based on Ant Colony Optimization Algorithm[J]. Chinese Journal of Electronics, 2013, 22(1): 118-123. |
I. Xenarion, et al., “DIP, the database of interacting proteins:a research tool for studying cellular networks of protein interaction”,Nucleic Acids Research, Vol.30, No.1, pp.303-305, 2002.
|
S. Kerrien, Y. Alam-Faruque, B. Aranda, et al., “IntAct-opensource resource for molecular interaction data”, Nucleic AcidsResearch, Vol.32, No.Suppl.1, pp.D561-D565, 2007.
|
G.R. Mishra, M. Suresh, K. Kumaran, N. Kannabiran, etal., “Human protein reference database-2006 update”, NucleicAcids Research, Vol.34, No.Suppl.1, pp.D411-D414, 2006.
|
U. Guldener, M. Munsterkotter, M. Oesterheld, P. Pagel, et al.,“MPact: the MIPS protein interaction resource on yeast”, NucleicAcids Research, Vol.34, No.Suppl.1, pp.D436-D441, 2006.
|
D.J.Watts, S.H. Strogatz, “Collective dynamics of ‘small-world’networks”, Nature, Vol.393, pp.440-442, 1998.
|
S. Yook, Z. Oltvai, A. Barabasi, “Functional and topologicalcharacterization of protein interaction network”, Proteomics,Vol.4, No.4, pp.928-942, 2004.
|
A.L. Barabási, Z.N. Oltvai, “Network biology: understandingthe cell’s functional organization”, Nature Reviews: Genetics,Vol.5, No.2, pp.101-113, 2004.
|
Z.G. Zhou, X.F. Song, “Predicting protein-protein interactionsbased on ensemble classifiers”, Acta Electronica Sinica, Vol.38,No.6, pp.1464-1467, 2010. (in Chinese)
|
P.G. Sun, L. Gao, S.S. Han, “Identification of overlappingand non-overlapping community structure by fuzzy clusteringin complex networks”, Information Sciences, Vol.181, No.6,pp.1060-1071, 2011.
|
T. Berggard, S. Linse, P. James, “Methods for the detectionand analysis of protein-protein interactions”, Proteomics, Vol.7,No.16, pp.2833-2842, 2007.
|
N. Elena, J. Kam, A. Amit, et al., “Whole-proteome predictionof protein function via graph-theoretic analysis of interactionmaps”, Bioinformatics, Vol.21, No.1, pp.i302-i310, 2005.
|
C. Youngrae, H. Woochang, R. Murali, et al., “Semantic integrationto identify overlapping functional modules in proteininteraction networks”, BMC Bioinformatics, Vol.8, 2007.
|
A.D. Zhang, “Protein interaction networks”, Cambridge UniversityPress, New York, USA, 2009.
|
E. Bonabeau, M. Dorigo, G. Theraulaz, “Inspiration for optimizationfrom social insect behavior”, Nature, Vol.406, No.6,pp.39-42, 2000.
|
J.L. Deneubourg, et al., “The dynamics of collective sortingrobot-like ants and ant-like robot”, Proceedings of the FirstInternational Conference on Simulation of Adaptive Behavior:From Animals to Animals, pp.356-363, 1991.
|
E. Lumer, B. Faieta, “Diversity and adaptation in populationof clustering ants”, Proceedings of the Third International Conferenceon Simulation of Adaptive Behavior: From Animals toAnimals, pp.499-508, 1994.
|
Y. Yan, S.K. Mohamed, “An aggregated clustering approach usingmulti-ant colonies algorithms”, Pattern Recognition, Vol.39,No.7, pp.1278-1289, 2006.
|
N. Monmarché, M. Slimane, G. Venturini, “On improving clusteringin numerical databases with artificial ants”, Lecture Notesin Computer Science, Vol.1674, pp.626-635, 1999.
|
X.J. Lei, et al., “Joint strength based ant colony optimizationclustering algorithm for PPI networks”, Acta Electronica Sinica,Vol.40, No.4, pp.695-702, 2012. (in Chinese)
|
U. Güldener, M. Münsterkötter, G. Kastenmüller, N. Strack, etal., “CYGD: the comprehensive yeast genome database”, NucleicAcids Research, Vol.33, pp.D364-D368, 2005.
|
X.J. Lei, X. Huang, L. Shi, A.D. Zhang, “Clustering PPI databased on improved functional-flow model through quantumbehavedPSO”, Int. J. Data Mining and Bioinformatics, Vol.6,No.1, pp.42-60, 2012.
|