LIU Pingping, ZHOU Qiuzhan, ZHAO Hongwei. Affine Invariant Feature Based on Local Color[J]. Chinese Journal of Electronics, 2013, 22(3): 511-516.
Citation: LIU Pingping, ZHOU Qiuzhan, ZHAO Hongwei. Affine Invariant Feature Based on Local Color[J]. Chinese Journal of Electronics, 2013, 22(3): 511-516.

Affine Invariant Feature Based on Local Color

  • Received Date: 2012-04-01
  • Rev Recd Date: 2012-07-01
  • Publish Date: 2013-06-15
  • Image localization using local features has attracted a lot of attention in recent mobile robots research. A novel, fast local invariant feature in affine transformation is proposed in this article, called AIFLC (Affine invariant feature based on local color). We adopt affine moment invariants to build affine invariant descriptors. Moreover, we use color gradient based center moment instead of original pixel values in order to enhance discriminative power and robustness of descriptor in photometric transformations. Simulation results show that the run time of AIFLC using optimal selection parameters is about 1/3 of classical SIFT algorithm. Using the standard evaluation images and the ones taken by mobile robots, we experimentally demonstrate that the AIFLC outperforms the state-of-art approaches such as SIFT and SURF in terms of image scaling, rotation, viewpoint changing, and blur transformations.
  • loading
  • J. Lee, H. Ko, “Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments”, Pattern Recognition Letters, Vol.14, No.29, pp.1934-1940, 2008.
    D.G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, Vol.60, No.2, pp.91-110, 2004.
    W. Freeman and E. Adelson, “The design and use of steerable filters”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.13, No.9, pp.891-906, 1991.
    S. Belongie, J. Malik, J. Puzicha, “Shape matching and object recognition using shape contexts”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.4, pp.509522, 2002.
    L. Florack, B. Haar Romeny, J. Koenderink and M. Viergever, “General intensity transformations and second order invariants”, Proceedings of the 7th Scandinavian Conference on Image Analysis, Aalborg, Denmark, pp.338-345, 1991.
    G. Carneiro, A.D. Jepson, “Multi-scale phase-based local features”, Proceedings of the IEEE International Conference on Computer Vision Pattern Recognition, pp.736-743, 2003.
    J. Van De Weijer, C. Schmid, “Coloring local feature extraction”, Proceedings of the European Conference on Computer Vision, Lecture Notes in Computer Science, pp.334-348, 2006.
    Bing Li, De Xu, Songhe Feng, “Illumination Estimation Based on Color Invariant”, Chinese Journal of Electronics, Vol.18, No.3, pp.431-434, 2009.
    K. Mikolajczyk, C. Schmid, “A performance evaluation of local descriptors”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No.10, pp.1615-1630, 2005.
    Y. Ke, R. Sukthankar, “PCA-SIFT: a more distinctive representation for local image descriptors”, 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.506-513, 2004.
    Herbert Bay, Tinne Tuytelaars, Luc Van Gool, “SURF: Speeded up robust features”, Proceedings of the 9th European Conference on Computer Vision, pp.404-417, 2006.
    J. van de Weijer, T. Gevers and A. Bagdanov, “Boosting color saliency in image feature detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.1, pp.150-156, 2006.
    A. Bosch, A. Zisserman and X. Muoz, “Scene classification using a hybrid generative/discriminative approach”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.30, No.4, pp.712-727, 2008.
    T. Gevers, J. van de Weijer and H. Stokman, Color Image Processing: Methods and Applications: Color Feature Detection: An Overview, CRC press, 2006, ch. 9, pp.203-226.
    A.E. Abdel-Hakim and A.A. Farag, “CSIFT: A SIFT descriptor with color invariant characteristics”, IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, pp.1978-1983, 2006.
    J. Flusser, T. Suk, “Pattern recognition by affine moment invariants”, Pattern Recognition, Vol.26, pp.167-174, 1993.
    Tomas Suk, Jan Flusser, “Affine moment invariants generated by graph method”, Pattern Recognition, Vol.44, No.9, pp.20472056, Sept. 2011.
    M.K. Hu, “Visual pattern recognition by moment invariants”, IRE Trans. Information Theory, Vol.8, pp.179-187, 1962.
    J. Flusser, “On the independence of rotation moment invariants”, Pattern Recognition, Vol.33, pp.1405-1410, 2000.
    Koen E.A. van de Sande, Theo Gevers and Cees G.M. Snoek, “Evaluating color descriptors for object and scene recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.32, No.9, pp.1582-1596, 2010.
    Gertjan J. Burghouts A., Jan-Mark Geusebroek, “Performance evaluation of local colour invariants”, Computer Vision and Image Understanding, Vol.113, pp.48-62, 2009.
    Pingping Liu, Hongwei Zhao, “Fast local feature algorithm applied to mobile robot localization image matching”, Chinese Journal of Scientific Instrument, Vol.30, pp.1714-1718, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (471) PDF downloads(1991) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return