3D Freehand Tracking Based on Relevancy Among Local Motion Models
-
Abstract
A novel 3D freehand tracking algorithm based on relevancy among local motion models is put forward. Firstly, a specification of the Cognitive and behavioral model (CBM) called PAMT is proposed. Secondly, we regard PAMT as a data structure upon which freehand tracking algorithm is designed, and we describe the PAMT in detail. Lastly, the experimental results are provided. The proposed algorithm is tested in a virtual assembly platform and two other application systems. The highlights of this paper are as follows: (1) A new cognitive and behavioral model, called PAMT, is presented; (2) The PAMT is explained with cognitive model; (3) Focus on describing ‘Attractor' in PAMT with the relevancy among local motion models; (4) Shows us how the PAMT is shaped and used to design the 3D freehand tracker. One of the advantages of PAMT and RLMM model is that it is easier to explore some of the complex correlations among the variables of the 3D hand model. Our experimental results show that, compared with the particle filter and the annealed particle filter, our algorithm effectively reduces dimensionality and can track 3D hand in real-time.
-
-