FU Yaowen, LONG Jianqian, YANG Wei. Maneuvering Multi-target Tracking Using the Multi-model Cardinalized Probability Hypothesis Density Filter[J]. Chinese Journal of Electronics, 2013, 22(3): 634-640.
Citation: FU Yaowen, LONG Jianqian, YANG Wei. Maneuvering Multi-target Tracking Using the Multi-model Cardinalized Probability Hypothesis Density Filter[J]. Chinese Journal of Electronics, 2013, 22(3): 634-640.

Maneuvering Multi-target Tracking Using the Multi-model Cardinalized Probability Hypothesis Density Filter

  • Received Date: 2012-02-01
  • Rev Recd Date: 2012-10-01
  • Publish Date: 2013-06-15
  • Tracking an unknown and time-varying number of maneuvering targets is a challenging problem in the presence of noise, clutter, uncertainties in target maneuvers, data association, and detection. To account for this problem, a multi-model extension of the Cardinalized probability hypothesis density (CPHD) filter is proposed in this paper. Additionally, a particle implementation and a Gaussian mixture implementation of the proposed extension are given for generic models and linear Gaussian models, respectively. The effectiveness of the extension is illustrated through Monte Carlo simulation.
  • loading
  • S.S. Blackman, M.T. Bush, R.F. Populi, “IMM/MHT tracking and data association for benchmark tracking problem”, Proceedings of the American Control Conference, 2606, 1995.
    B.N. Vo, W.K. Ma, “The Gaussian mixture probability hypothesis density filter”, IEEE Trans. on Signal Processing, Vol.54, No.11, pp.4091-4104, 2006.
    S.A. Pasha, B.N. Vo, H.D. Tuan, W.K, Ma, “A Gaussian mixture PHD filter for jump Markov system models”, IEEE Trans. on Aerospace and Electronic Systems, Vol.45, No.3, pp.919-936, 2009.
    R. Mahler, Statistical Multisource-Multitarget Information Fusion, Norwood, MA: Artech House, 2007.
    B.T. Vo, B.N. Vo, A. Cantoni, “Analytic implementations of the cardinalized probability hypothesis density filter”, IEEE Trans. on Signal Processing, Vol.55, No.7, pp.3553-3567, 2007.
    R. Mahler, “PHD filters of higher order in target number”, IEEE Trans. on Aerospace and Electronic Systems, Vol.43, No.3, pp.1523-1543, 2007.
    X. Rong Li, Vesselin P. Jilkov, “Survey of maneuvering target tracking. Part V: Multiple-model methods”, IEEE Trans. on Aerospace and Electronic Systems, Vol.41, No.4, pp.1255-1321, 2005.
    H. Sidenbladh, Multi-target particle filtering for the probability hypothesis density”, Proceedings of the 6th International Conference of Information Fusion, Vol.2, pp.800-806, 2003.
    B.N. Vo, S. Singh, A. Doucet, “Sequential Monte Carlo methods for multi-target filtering with random finite sets”, IEEE Transactions on Aerospace and Electronic Systems, Vol.41, No.4, pp.1224-1245, 2005.
    S. Puranik, Jitendra K. Tugnait, “Tracking of multiple maneuvering targets using multiscan JPDA and IMM filter”, IEEE Trans. on Aerospace and Electronic Systems, Vol.43, No.1, pp.23-35, 2007.
    D. Schuhmacher, B.T. Vo, B.N. Vo, “A consistent metric for performance evaluation of multi-object filters”, IEEE Trans. on Signal Processing, Vol.56, No.8, pp.3447-3457, 2008.
    R. Mahler, B.T. Vo, B.N. Vo, “CPHD filtering with unknown clutter rate and detection profile”, IEEE Trans. on Signal Processing, Vol.59, No.8, pp.3497-3513, 2011.
    X. Rong Li, Engineering's guide to variable-structure multiplemodel estimation for tracking, In Y. Bar-Shalom and W.D. Blair, (Eds.), Multitarget-Multisensor Tracking: Applications and Advances, Vol.III, Norwood, MA: Artech House, cha. 10, pp.499-567, 2000.
    W. Yang, Y.W. Fu, J.Q. Long, X. Li, “The FISST-based target tracking techniques: A survey”, Acta Electronica Sinica, Vol.40, No.7, pp.1440-1448, 2012. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(1865) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return