LIU Bin, WANG Huanyu, YU Qiuze, LIU Xingzhao, YU Wenxian. A Novel Ship Detection Approach for Polarimetric SAR Images Based on a Foreground/Background Separation Framework[J]. Chinese Journal of Electronics, 2013, 22(3): 641-647.
Citation: LIU Bin, WANG Huanyu, YU Qiuze, LIU Xingzhao, YU Wenxian. A Novel Ship Detection Approach for Polarimetric SAR Images Based on a Foreground/Background Separation Framework[J]. Chinese Journal of Electronics, 2013, 22(3): 641-647.

A Novel Ship Detection Approach for Polarimetric SAR Images Based on a Foreground/Background Separation Framework

Funds:  This work is supported in part by the National High Technology Research and Development Program of China (863 Program) (No.2009AA12Z145) and the Shanghai Jiao Tong University Graduate Student Innovation Foundation (No.Z-030-029).
  • Received Date: 2011-11-01
  • Rev Recd Date: 2012-10-01
  • Publish Date: 2013-06-15
  • In this paper, we present a novel ship detection approach for Polarimetric synthetic aperture radar (PolSAR) images based on a Foreground/background separation (FBS) framework, which exploits the statistical dissimilarity of PolSAR data to separate desired targets from the background clutter. Since the FBS framework takes the spatial relations between pixels into consideration and the separation process exploits the inherent characteristics of PolSAR data, the proposed detector is stable to speckle. And the detection process is filter-free, thus it can preserve the edge and shape information of the extracted targets. Experimental results and comparisons with the standard polarimetric detector show that the proposed method is promising. Factors that affect the performance of the proposed detector are also analyzed and discussed in this paper.
  • loading
  • J.S. Lee, M.R. Grunes and E. Pottier, “Quantitative comparison of classification capability: Fully polarimetric versus dual and single polarization SAR”, IEEE Trans. Geosci. Remote Sens., Vol.39, No.11, pp.2343-2351, 2001.
    P.C. Dubois, J.J. Van Zyl and T. Engman, “Measuring soil moisture with imaging radars”, IEEE Trans. Geosci. Remote Sens., Vol.33, No.4, pp.915-926, 1995.
    D.. Schuler, J.S. Lee and G. de Grandi, “Measurement of topography using polarimetric SAR images”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.5, pp.1210-1221, 1996.
    J.C. Souyris, C. Henry and F. Adragna, “On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry”, IEEE Trans. Geosci. Remote Sens., Vol.41, No.12, pp.2725-2734, 2003.
    Z. Tang, M. Zhu and W. Wang, “A CFAR detection method of ship wakes in SAR images”, Acta Electronica Sinica, Vol.30, No.9, pp.1336-1339, 2002. (in Chinese)
    J. Chong and M. Zhu, “Survey of the study on ship and wake detection in SAR imagery”, Acta Electronica Sinica, Vol.31, No.9, pp.1356-1360, 2003. (in Chinese)
    L.M. Novak, M.B. Sechen and M.J. Cardullo, “Studies of target detection algorithms that use polarimetric data”, IEEE Trans. Aerosp. Electron. Syst., Vol.25, No.2, pp.150-165, 1989.
    R. Touzi, “On the use of polarimetric SAR data for ship detection”, Proc. IEEE IGARSS, Hamburg, Germany, Vol.6, pp.3895-3897, 1999.
    C. Liu, P.W. Vachon and G.W. Geling, “Improved ship detection with airborne polarimetric SAR data”, Can. J. Remote Sens., Vol.31, No.1, pp.122-131, 2005.
    L.M. Novak and M.C. Burl, “Optimal speckle reduction in POLSAR imagery and its effect on target detection”, Proc. of Millimeter Wave and Synthetic Aperture Radar, Orlando, FL, United States, pp.84-115, 1989.
    R.D. Chaney, M.C. Bud and L.M. Novak, “On the performance of polarimetric target detection algorithms”, IEEE Aerosp. Electron. Syst. Mag., Vol.5, No.11, pp.10-15, 1990.
    W.L. Cameron, N. Youssef and L.K. Leyng, “Simulated polarimetric signatures of primitive geometrical shapes”, IEEE Trans. Geosci. Remote Sens., Vol.34, No.3, pp.793-803, 1996.
    R. Ringrose and N. Harris, “Ship detection using polarimetric SAR data”, Proceedings of the CEOS SAR Workshop, Toulouse, ESA SP-450, pp.687-691, 2000.
    M.L. Yeremy, G. Geling and M. Rey, “Results from the Crusade ship detection trial: Polarimetric SAR”, Proc. IEEE IGARSS, Toronto, Canada, Vol.2, pp.711-713, 2002.
    H. Li, Y. He, L. Meng and W. Wang, “Ship detection and characterization with generalized optimization of polarimetric contrast enhancement”, Chinese Journal of Electronics, Vol.17, No.3, pp.541-545, 2008.
    X. Chen et al., “Detection of ships using sub-aperture airborne PolSAR data”, Proc. APSAR, Xi'an, China, pp.717-720, 2009.
    Y. Allard et al., “Ship detection and characterization using polarimetric SAR data”, Harbour Protection Through Data Fusion Technologies, E. Shahbazian, G. Rogova, and M.J. DeWeert, Eds., Dordrecht, Netherlands: Springer, pp.243-250, 2009.
    W. Wang, J. Wang, P. Lei and S. Mao, “A new ship detection method based on polarimetric SAR classification”, Chinese Journal of Electronics. Vol.17, No.4, pp.769-774, 2008.
    B. Liu et al., “A foreground/background separation framework for interpreting polarimetric SAR images”, IEEE Geosci. Remote Sens. Lett., Vol.8, No.2, pp.288-292, 2011.
    N.R. Goodman, “Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)”, Ann. Math. Statist., Vol.34, No.1, pp.152-177, 1963.
    J.S. Lee et al., “Classification of multi-look polarimetric SAR imagery based on the complex Wishart distribution”, Int. J. Remote Sens., Vol.15, No.11, pp.2299-2311, 1994.
    B. Sumengen and B.S. Manjunath, “Graph partitioning active contours (GPAC) for image segmentation”, IEEE Trans. Pattern Anal. Mach. Intell., Vol.28, No.4, pp.509-521, 2006.
    S.Z. Li, “Markov random field models in computer vision”, Proc. IEEE ECCV, Stockholm, Sweden, Vol.2, pp.361-370, 1994.
    S. Geman et al., “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”, IEEE Trans. Pattern Anal. Mach. Intell., Vol.PAMI-6, No.6, pp.721-741, 1984.
    Y. Wu, K. Ji, W. Yu and Y. Su, “Region-based classification of polarimetric SAR images using Wishart MRF”, IEEE Geosci. Remote Sens. Lett., Vol.5, No.4, pp.668-672, 2008.
    K. Conradsen et al., “A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data”, IEEE Trans. Geosci. Remote Sens., Vol.41, No.1, pp.4-19, 2003.
    F. Cao, W. Hong, Y. Wu and E. Pottier, “An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/α/A space and the complex Wishart clustering for fully polarimetric SAR data analysis”, IEEE Trans. Geosci. Remote Sens., Vol.45, No.11, pp.3454-3467, 2007.
    P.R. Kersten, J.S. Lee and T.L. Ainsworth, “Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering”, IEEE Trans. Geosci. Remote Sens., Vol.43, No.3, pp.519-527, 2005.
    G. Vasile et al., “Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric SAR images”, IEEE Trans. Geosci. Remote Sens., Vol.48, No.4, pp.1809-1826, 2010.
    S.N. Anfinsen et al., “Spectral clustering of polarimetric SAR data with Wishart-derived distance measures”, Proc. 3th Int. Workshop POLinSAR, Frascati, Italy, pp.1-8, 2007.
    B. Liu et al., “Superpixel-based classification with an adaptive number of classes for polarimetric SAR images”, IEEE Trans. Geosci. Remote Sens., in press. doi: 10.1109/TGRS.2012.2203358.
    J.S. Lee et al., “Unsupervised terrain classification preserving polarimetric scattering characteristics”, IEEE Trans. Geosci. Remote Sens., Vol.42, No.4, pp.722-731, 2004.
    J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999.
    SIR-C PolSAR images. [Online]. Available: http://earthexplorer. usgs.gov/, 2012-12-29
    N. Robertson, P. Bird and C. Brownsword, “Ship surveillance using RADARSAT ScanSAR images”, Alliance for Marine Remote Sensing (AMRS) Workshop on Ship Detection in Coastal Waters, NS, Canada, pp.41-45, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (329) PDF downloads(1946) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return