Citation: | WANG Rong, GAO Feifei, YAO Minli, et al., “Adaptive Algorithms for Generalized Eigenvalue Decomposition with a Nonquadratic Criterion,” Chinese Journal of Electronics, vol. 22, no. 4, pp. 807-812, 2013, |
H. Chen, T. Sarkar, S. Dianat, J. Brule, “Adaptive spectrale stimation by the conjugate gradient method”, IEEE Trans.A coust., Speech. Signal Process., Vol.34, No.2, pp.272-284,1 986.
|
E. Warsitz and M.R. Haeb-Umbach, “Blind acoustic beamformingb ased on generalized eigenvalue decomposition”, IEEET rans. Audio Speech Lang. Process., Vol.15, No.5, pp.1529-1 539, 2007.
|
N. Cheng, W. Liu, L. Wang, “Subspace noise estimation andg amma distribution based microphone array post-filter design”, Chinese Journal of Electronics, Vol.20, No.2, pp.293-298, 2011.
|
C. Chang, Z. Ding, S.F. Yan, F.H.Y. Chan, “A matrix-pencila pproach to blind separation of colored nonstationary signals”,I EEE Trans. Signal Process., Vol.48, No.3, pp.900-907, 2000.
|
L. Parra and P. Sajda, “Blind source separation via generalizede igenvalue decomposition”, J. Mach. Learn. Res., Vol.4, No.12,p p.1261-1269, 2003.
|
S.Hyeon and S. Choi, “Generalized eigen-combining algorithmf or adaptive array systems in a co-channel interference environment”,I EEE Commun. Lett., Vol.13, No.4, pp.215-217, 2009.
|
A. Bunse-Gerstner, “An algorithm for the symmetric generalizede igenvalue problem”, Linear Alg. Appl., Vol.58, No.4,p p.43-68, 1984.
|
G. Golub and C. Van Loan, Matrix Computations, Baltimore,M D: Johns Hopking Univ. Press, 1996.
|
W. Shugen and Z. Shuqin, “An algorithm for Ax = λBx withs ymmetric and positive-definite A and B”, SIAM J. MatrixA nal. Appl., Vol.12, No.10, pp.654-660, 1991.
|
P. Strobach, “Fast orthogonal iteration adaptive algorithms fort he generalized symmetric eigenproblem”, IEEE Trans. Signal Process., Vol.46, No.12, pp.3345-3359, 1998.
|
D. Morgan, “Adaptive algorithms for solving generalized eigenvalues ignal enhancement problems”, Signal Process., Vol.84,N o.6, pp.957-968, 2004.
|
C. Chatterjec, V.P. Roychowdhury, J. Ramos, M.D.Z oltowski, “Self-organizing algorithms for generalized eigendecomposition”,I EEE Tans. Neural Netw., Vol.8, No.6,p p.1518-1530, 1997.
|
G. Mathew and V.U. Reddy, “A quasi-Newton adaptive algorithmf or generalized symmetric eigenvalue problem”, IEEET rans. Signal Process., Vol.44, No.10, pp.2413-2422, 1996.
|
Y. Rao, J. Principe, T. Wong, “Fast RLS-like algorithm for generalizede igendecomposition and its applications”, J. VLSI Signal Process., Vol.37, No.2, pp.333-344, 2004.
|
J. Yang, H. Xi, F. Yang Y. Zhao, “RLS-based adaptive algorithmsf or generalized eigen-decomposition”, IEEE Trans. Signal Process., Vol.54, No.4, pp.1177-1188, 2006.
|
S. Attallah and K. Abed-Meraim, “A fast adaptive algorithmf or the generalized symmetric eigenvalue problem”, IEEE Signal Process Lett., Vol.15, No.11, pp.797-800, 2008.
|
T. Tanaka, “Fast generalized eigenvector tracking based on thep ower method”, IEEE Signal Process. Lett., Vol.16, No.11,p p.969-972, 2009.
|
Y. Miao and Y. Hua, “Fast subspace tracking and neural networkl earning by a novel information criterion”, IEEE Trans.S ignal Process., Vol.46, No.7, pp.1967-1979, 1998.
|
A. Hjorungnes and D. Gesbert, “Complex-valued matrix differentiation:t echniques and key results”, IEEE Trans. Signal Process., Vol.55, No.6, pp.2740-2746, 2007.
|
A. Hjorungnes, Complex-Vatued Matrix Derivatives: With Applicationsi n Signal Processing and Communications, CambridgeU niv Pr, 2011.
|
B. Yang, “Projection approximation subspace tracking”, IEEET rans. Signal Process., Vol.43, No.1, pp.95-107, 1995.
|
J. Magnus and H. Neudecker, Matrix Differential Calculus withA pplications in Statistics and Econometrics, 3rd ed., Wiley,New York, 2007.
|