WU Yuntao, HUANG Longting, CAO Hui, et al., “HOSVD-Based Subspace Algorithm for Multidimensional Frequency Estimation Without Pairing Parameters,” Chinese Journal of Electronics, vol. 23, no. 4, pp. 729-734, 2014,
Citation: WU Yuntao, HUANG Longting, CAO Hui, et al., “HOSVD-Based Subspace Algorithm for Multidimensional Frequency Estimation Without Pairing Parameters,” Chinese Journal of Electronics, vol. 23, no. 4, pp. 729-734, 2014,

HOSVD-Based Subspace Algorithm for Multidimensional Frequency Estimation Without Pairing Parameters

Funds:  This work is supported by the National Natural Science Foundation of China (No.61172150), the program for New Century Excellent Talents in University (No.NCET-13-0940) and the Research Plan Project of Hubei Provincial Department of Education (No.T201206).
  • Received Date: 2012-09-01
  • Rev Recd Date: 2013-10-01
  • Publish Date: 2014-10-05
  • In this paper, a new method for multidimensional frequency estimation of multiple sinusoids that combines the HOSVD (Higher-order singular value decomposition) subspace and projection separation approaches is presented. Frequency parameters in the first dimension are obtained by using the signal subspace of the first dimension which is extracted by the HOSVD decomposition. Subsequently, a set of projection separation matrices is constructed to project the measure tensor and separate the components of the received tensor into single ones. And then, the signal subspace of each dimension of separated measure tensor are estimated by the HOSVD decomposition and the desired multidimensional frequency pairing are automatically obtained. Simulation results are included to demonstrate the advantage of the proposed method over two existing methods in terms of performance as well computational load.
  • loading
  • Y. Li, J. Razavilar, and K.J.R. Liu, A high-resolution technique for multidimensional NMR spectroscopy, IEEE Transactions on Biomedical Engineering, Vol.45, pp.78-86, 1998.
    X. Liu, N.D. Sidiropoulos, and A. Swami, Blind high-resolution localization and tracking of multiple frequency hopped signals, IEEE Trans. Signal Process., Vol.50, No.4, pp.889-901, Apr. 2002.
    F.K.W. Chan, H.C. So, S.-C. Chan, W.H. Lau and C.F. Chan, Accurate parameter estimation for wave equation, Progress in Electromagnetics Research, Vol.102, pp.31-48, 2010.
    K.N. Mokios, N.D. Sidiropoulos, M. Pesavento and C.F. Mecklenbräuker, On 3-D harmonic retrieval for wireless channel sounding, Proc., IEEE International Conference on Acoustics, Speech and Signal Processing, Vol.2, pp.II89-II92, Montreal, Quebec, Canada, 2004.
    M. Haardt and J.A. Nossek, Simultaneous schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems, IEEE Trans. Signal Process., Vol.46, No.1, pp.161-169, 1998.
    H.L. Van Trees, Optimum Array Processing: Detection, Estimation, and Modulation Theory, Part IV, New York: Wiley, 2002.
    M. Pesavento, C. F. Mecklenbräker, and J. F. Böme, Multi-dimensional rank reduction estimator for parametric MIMO channel models, EURASIP J. Appl. Signal Process., Vol.2004, pp.1354-363, 2004.
    J. Liu and X. Liu,An eigenvector-based approach for multidimensional frequency estimation with improved identifiability, IEEE Trans. Signal Process., Vol.54, No.12, pp.4543-4556, Dec. 2006.
    L. de Lathauwer, B. de Moor, and J. Vanderwalle, A multilinear singular-value decomposition, SIAM J. Matrix Anal. Appl., Vol.21, No.4, pp.1253-278, 2000.
    L. de Lathauwer, B. de Moor, and J. Vanderwalle,On the best rank-1 and rank-(r1,r2,…,r_n) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., Vol.21, No.4, pp. 1324-1342, 2000.
    A. Thakre, M. Haardt, F. Roemer and K. Giridhar, Tensor-based spatial smoothing (TB-SS) using multiple snapshots, IEEE Trans. Signal Process., Vol.58, No.5, pp.2715-2728, 2010.
    D. Nion and N. D. Sidiropoulos, Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar, IEEE Trans. Signal Process., Vol.58, No.11, pp.5693-5705, 2010.
    J. Salmi, A. Richter and V. Koivunen,Sequential unfolding SVD for tensors with applications in array signal processing, IEEE Trans. Signal Process., Vol.57, No.12, pp.4719-4733, 2009.
    M. Haardt, F. Roemer, and G. Del Galdo, Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems, IEEE Trans. Signal Process., Vol.56, No.7, pp.3198-3213, 2008.
    Rémy Boyer, Decoupled root-music algorithm for multidimensional harmonic retrieval, IEEE Workshop on Signal Processing Advances in Wireless Communications, pp. 16-20, Recife, Brazil, 2008.
    Longting Huang, Yuntao Wu, H.C.So, Yanduo Zhang and Lei Huang, Multidimensional sinusoidal frequency estimation using subspace and projection separation approaches, IEEE Trans. Signal Process., Vol.60, No.10, pp.5536-5543, 2012.
    Y.-Y. Wang, J.-T. Chen and W.-H. Fang, TST-MUSIC for joint DOA-delay estimation, IEEE Trans. Signal Process., Vol.49, No.4, pp.721-729, 2001.
    M. Pesavento, A. B. Gershman and M. Haardt, Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study, IEEE Trans. Signal Process., Vol.48, No.5, pp.1306-1314, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (584) PDF downloads(1714) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return