Citation: | WU Yuntao, HUANG Longting, CAO Hui, et al., “HOSVD-Based Subspace Algorithm for Multidimensional Frequency Estimation Without Pairing Parameters,” Chinese Journal of Electronics, vol. 23, no. 4, pp. 729-734, 2014, |
Y. Li, J. Razavilar, and K.J.R. Liu, A high-resolution technique for multidimensional NMR spectroscopy, IEEE Transactions on Biomedical Engineering, Vol.45, pp.78-86, 1998.
|
X. Liu, N.D. Sidiropoulos, and A. Swami, Blind high-resolution localization and tracking of multiple frequency hopped signals, IEEE Trans. Signal Process., Vol.50, No.4, pp.889-901, Apr. 2002.
|
F.K.W. Chan, H.C. So, S.-C. Chan, W.H. Lau and C.F. Chan, Accurate parameter estimation for wave equation, Progress in Electromagnetics Research, Vol.102, pp.31-48, 2010.
|
K.N. Mokios, N.D. Sidiropoulos, M. Pesavento and C.F. Mecklenbräuker, On 3-D harmonic retrieval for wireless channel sounding, Proc., IEEE International Conference on Acoustics, Speech and Signal Processing, Vol.2, pp.II89-II92, Montreal, Quebec, Canada, 2004.
|
M. Haardt and J.A. Nossek, Simultaneous schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems, IEEE Trans. Signal Process., Vol.46, No.1, pp.161-169, 1998.
|
H.L. Van Trees, Optimum Array Processing: Detection, Estimation, and Modulation Theory, Part IV, New York: Wiley, 2002.
|
M. Pesavento, C. F. Mecklenbräker, and J. F. Böme, Multi-dimensional rank reduction estimator for parametric MIMO channel models, EURASIP J. Appl. Signal Process., Vol.2004, pp.1354-363, 2004.
|
J. Liu and X. Liu,An eigenvector-based approach for multidimensional frequency estimation with improved identifiability, IEEE Trans. Signal Process., Vol.54, No.12, pp.4543-4556, Dec. 2006.
|
L. de Lathauwer, B. de Moor, and J. Vanderwalle, A multilinear singular-value decomposition, SIAM J. Matrix Anal. Appl., Vol.21, No.4, pp.1253-278, 2000.
|
L. de Lathauwer, B. de Moor, and J. Vanderwalle,On the best rank-1 and rank-(r1,r2,…,r_n) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., Vol.21, No.4, pp. 1324-1342, 2000.
|
A. Thakre, M. Haardt, F. Roemer and K. Giridhar, Tensor-based spatial smoothing (TB-SS) using multiple snapshots, IEEE Trans. Signal Process., Vol.58, No.5, pp.2715-2728, 2010.
|
D. Nion and N. D. Sidiropoulos, Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar, IEEE Trans. Signal Process., Vol.58, No.11, pp.5693-5705, 2010.
|
J. Salmi, A. Richter and V. Koivunen,Sequential unfolding SVD for tensors with applications in array signal processing, IEEE Trans. Signal Process., Vol.57, No.12, pp.4719-4733, 2009.
|
M. Haardt, F. Roemer, and G. Del Galdo, Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems, IEEE Trans. Signal Process., Vol.56, No.7, pp.3198-3213, 2008.
|
Rémy Boyer, Decoupled root-music algorithm for multidimensional harmonic retrieval, IEEE Workshop on Signal Processing Advances in Wireless Communications, pp. 16-20, Recife, Brazil, 2008.
|
Longting Huang, Yuntao Wu, H.C.So, Yanduo Zhang and Lei Huang, Multidimensional sinusoidal frequency estimation using subspace and projection separation approaches, IEEE Trans. Signal Process., Vol.60, No.10, pp.5536-5543, 2012.
|
Y.-Y. Wang, J.-T. Chen and W.-H. Fang, TST-MUSIC for joint DOA-delay estimation, IEEE Trans. Signal Process., Vol.49, No.4, pp.721-729, 2001.
|
M. Pesavento, A. B. Gershman and M. Haardt, Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study, IEEE Trans. Signal Process., Vol.48, No.5, pp.1306-1314, 2000.
|