Citation: | DU Jiao, PANG Shanqi, WEN Qiaoyan, et al., “Construction and Count of 1-Resilient Rotation Symmetric Boolean Functions on pr Variables,” Chinese Journal of Electronics, vol. 23, no. 4, pp. 816-820, 2014, |
E. Filiol, et al., Highly nonlinear balanced Boolean functions with good correlation immunity, Advances in Cryptology-EUROCRYPT'98, Lecture Notes in Computer Science, Springer-Verlag, Espoo, Finland, Vol.1403, pp.475-488, 1998.
|
J. Pieprzyk and C.X. Qu, Fast hashing and rotation symmetric functions, Journal Universal Computer Science, Vol.5, No.1, pp.20-31,1999.
|
W. Cusick, P. Stanica and S. Maitra, Fast evaluation, weight and nonlinearity of rotation symmetric functions, Discrete mathematics, Vol.258, No.1-3, pp.289-301, 2002.
|
P. Stanica, et al, Results on rotation symmetric bent and correlation immune Boolean functions, Fast software encryption workshop (FSE 2004), Lecture Notes in Computer Science, Springer Verlag, New Delhi, India, Vol.3017, pp.161-177, 2004.
|
S. Sarkar and S. Maitra, Construction of rotation symmetric Boolean functions with maximum algebraic immunity on odd number of variables, Boztas, S. Lu, H-F.(eds.)AAECC 2007, Lecture Notes in Computer Science, Springer, Heidelberg, Vol.4851, pp.271-280, 2007.
|
P. Stanica and S. Maitra, Rotation symmetric Boolean functions count and cryptographic properties, Discrete Applied Mathematics, Vol.156, No.10, pp.1567-1580, 2008.
|
S. Fu, C. Li, K. Matsuura and L. Qu, Construction of rotation symmetric Boolean functions with maximum algebraic immunity, Cryptology and Network Security, Proc. of the 8th International Conference, Kanazawa, Japan, pp.402-412, 2009.
|
S. Fu, L. Qu, C. Li and B. Sun, Balanced rotation symmetric Boolean functions with maximum algebraic immunity, IET Information Security, Vol.5, No.2, pp.93-99, 2011.
|
P. Stanica and S. Maitra, A constructive count of rotation symmetric functions, Information Processing Letters, Vol.88, No.6, pp.299-304, 2003.
|
C. Carlet, D.K. Dalai, K.C. Gupta, et al., Algebraic immunity for cryptographically significant Boolean functions: Analysis and construction, IEEE Trans. Inform. Theory, Vol.52, No.7, pp.3105-3121, 2006.
|
S. Fu, C. Li and L. Qu, On the number of rotation symmetric Boolean functions, Science China Information Sciences, Vol.53, No.3, pp.537-545, 2010.
|
T. Siegenthaler, Correlation-immune of nonlinear combining functions for cryptographic applications, IEEE Trans. Inform. Theory, Vol.30, No.5, pp.776-780, 1984.
|
B. Chor, O. Goldreich, J. Hasted, et al., The bit extraction problem or t-resilient functions, Proc. of the 26th IEEE Symposium on Foundations of Computer Science, pp.396-407, 1985.
|
C.H. Bennett, et al, Privacy amplification by public discussion, SIAM J. Comput., Vol.17, pp.210-229, 1988.
|
W. Zhang and G. Xiao, Constructions of almost optimal resilient Boolean functions on large even number of variables, IEEE Trans. Inform. Theory, Vol.55, No.12, pp.5822-5831, 2009.
|
J. Le and A. Viola, Equivalence class of Boolean functions for first-order correlation, IEEE Trans. Inform. Theory, Vol.56, No.3, pp.1247-1261, 2010.
|
S. Maitra and E. Pasalic, Further constructions of resilient Boolean functions with very High nonlinearity, IEEE Trans. Inform. Theory, Vol.48, No.7, pp.1825-1834, 2002.
|
P. Camion, C. Carlet, P. Charpin, et al., On correlation-immune functions, Advance in Cryptology-CRYPTO'91, Lecture Notes in Computer Science, Springer-verlag, Berlin, Germany, Vol.576, pp.86-100, 1992.
|
D.R. Stinson., Resilient functions and large sets of orthogonal arrays, Congr. Numer., Vol.92, pp.105-110, 1993.
|
J. Zhang, Z. You and Z. Li, Enumeration of binary orthogonal arrays of strength 1, Discrete Mathematics, Vol.239, No.1-3, pp.191-198, 2001.
|
P. Sarkar and S. Maitra, Balancedness and correlation immunity of symmetric Boolean functions, Discrete Mathematics, Vol.307, No.19-20, pp.2351-2358, 2007.
|
J. Peng and H. Kan, Constructing correlation immune symmetric Boolean functions, IEICE Trans. Fundamentals., Vol.E94-A, No.7, pp.1591-1596, 2011.
|
K. Gopalakrisnan, D.G. Hoffman and D.R. Stinson, A note on a conjecture concerning symmetric resilient functions, Information processing letter, Vol.47, No.3, pp.139-143, 1993.
|
C. Wu and E. Dawson, Correlation immunity and resiliency of symmetric Boolean functions, Theoretical Computer Science, Vol.312, No.2-3, pp.321-335, 2004.
|
J. Du, Q. Wen, et al., Construction and count of resilient rotation symmetric Boolean functions with prime number variables, Journal on Communications, Vol.34, No.3, pp.6-13, 2013. (in Chinese)
|
J. Du, Q. Wen, J. Zhang, et al., Construction and counting of 1-resilient RSBFs on pq variables, IEICE Trans. Fundamentals., Vol.E96-A, No.7, pp.1653-1656, 2013.
|
J. Du, Q. Wen, J. Zhang, et al., Constructions of resilient rotation symmetric Boolean functions on given number of variables, IET Information Security, Vol.8, No.5, pp.265-272, 2014.
|
Q. Wen, X. Niu and Y. Yang, The Boolean Functions in Modern Cryptology, Science Press, Beijing, China, 2000. (in Chinese)
|
H. Zheng and C. Jin, Construction and enumeration of mth-order correlation immune functions, Acta Electronica Sinica, Vol.36, No.4, pp.804-808, 2008. (in Chinese)
|