A Novel Refined Track Initiation Algorithm for Group Targets Based on Group Model
-
Abstract
Traditional refined track initiation methods for group targets have mistakes or loss of tracks when tracking irregular motions, for the reason that they rely on a stable relative position of group members. To solve the problem, a group dynamic model was introduced for proposing a new initiation algorithm and its whole framework. We made a self-adaptive improvement of the group separation on various group radii. After the pre-association of these groups, a state equation derived from the model was used for predictions of group members. Then a relational matrix was defined for refined data associations. Finally tracks were validated by logic-based method. Particular scenarios and Monte Carlo simulations showed that, compared with algorithms based on relative position, this algorithm has better performance on the adaptability to changes of a group structure and the correctness of initiation.
-
-