ZHANG Lijun, LI Bing, CHENG Leelung. Construction of Type-II QC LDPC Codes Based on Perfect Cyclic Difference Set[J]. Chinese Journal of Electronics, 2015, 24(1): 146-151.
Citation: ZHANG Lijun, LI Bing, CHENG Leelung. Construction of Type-II QC LDPC Codes Based on Perfect Cyclic Difference Set[J]. Chinese Journal of Electronics, 2015, 24(1): 146-151.

Construction of Type-II QC LDPC Codes Based on Perfect Cyclic Difference Set

Funds:  This work is supported by National Natural Science Foundation of China (No.61371070, No.61271199).
  • Received Date: 2013-01-01
  • Rev Recd Date: 2014-05-01
  • Publish Date: 2015-01-10
  • Quasi-cyclic (QC) Low-density parity-check (LDPC) codes are constructed from combination of weight-0 (null matrix) and Weight-2 (W2) Circulant matrix (CM), which can be seen as a special case of the general type-II QC LDPC codes. The shift matrix of the codes is built on the basis of one integer sequence, called perfect Cyclic difference set (CDS), which guarantees the girth of the code at least six. Simulation results show that the codes can perform well in comparison with a variety of other LDPC codes. They have excellent error floor and decoding convergence characteristics.
  • loading
  • R.G. Gallager, "Low density parity check codes", IRE Transactions on Information Theory, Vol.8, No.1, pp.21-28, 1962.
    D.J.C. Mackay and R.M. Neal, "Good error correcting codes based on very sparse matrices", IEEE Transactions on Information Theory, Vol.45, No.2, pp.399-431, 1999.
    T. Richardson and R. Urbankf, "The capacity of low-density parity-check codes under message-passing decoding", IEEE Transactions on Information Theory, Vol.47, No.2, pp.599-618, 2001.
    Zhang Li, Huang Qin, Lin Shu, et al., "Quasi-cyclic LDPC codes: An algebraic construction, rank analysis, and codes on latin squares", IEEE Transactions on Communications, Vol.58, No.11, pp.3126-3139, 2010.
    Huang Jie and Zhang Lijun, "Relative-residual-based dynamic schedule for belief propagation decoding of LDPC codes", China Communications, Vol.8, No.5, pp.47-53, 2011.
    Liu Minghua and Zhang Lijun, "Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor", Frontiers of Electrical and Electronic Engineering, Vol.7, No.3, pp.279- 285, 2012.
    S. Myung, K. Yang and J. Kim, "Quasi-cyclic LDPC codes for fast encoding", IEEE Transactions on Information Theory, Vol.51, No.8, pp.2894-2901, 2005.
    W. Ryan and S. Lin, Channel Codes: Classical and Modern, Cambridge University Press, UK, 2009.
    Lan Lan, Zeng Linqi, Tai Y.Y., et al., "Construction of quasicyclic LDPC codes for AWGN and binary erasure channels: A finite field approach", IEEE Transactions on Information Theory, Vol.53, No.7, pp.2429-2458, 2007.
    Lan Lan, Tai Y.Y., Lin Shu, et al., "New constructions of quasicyclic LDPC codes based on special classes of BIBDs for the AWGN and binary erasure channels", IEEE Transactions on Communications, Vol.56, No.1, pp.39-48, 2008.
    Kou Yu, Lin Shu and Fossorier M., "Low-density parity-check codes based on finite geometries: A rediscovery and new results", IEEE Transactions on Information Theory, Vol.47, No.7, pp.2711-2736, 2001.
    Huang Jenfa, Huang Chunming and Yang Chaochin, "Construction of one-coincidence sequence quasi-cyclic LDPC codes of large girth", IEEE Transactions on Information Theory, Vol.58, No.3, pp.1825-1836, 2012.
    H. Falsafain and M. Esmaeili, "A new construction of structured binary regular LDPC codes based on steiner systems with parameter t > 2", IEEE Transactions on Communications, Vol.60, No.1, pp.74-80, 2012.
    K. Wang, Y. Xiao and K. Kim, "Construction of protograph LDPC codes with circular generator matrices", Journal of Systems Engineering and Electronics, Vol.22, No.5, pp.840-847, 2011.
    Kang Jingyu, Huang Qin, Zhang Li, et al., "Quasi-cyclic LDPC codes: An algebraic construction", IEEE Transactions on Communications, Vol.58, No.5, pp.1383-1396, 2010.
    D. Nguyen, S.K. Chilappagari, M.W. Marcellin, et al., "On the construction of structured LDPC codes free of small trapping sets", IEEE Transactions on Information Theory, Vol.58, No.4, pp.2280-2302, 2012.
    Li Zongwang, Chen Lei, Zeng Linqi, et al., "Efficient encoding of quasi-cyclic low-density parity-check codes", IEEE Transactions on Communications, Vol.54, No.1, pp.71-81, 2006.
    K. Lally, "Explicit construction of type-II QC LDPC codes with girth at least 6", Proc. of IEEE International Symposium on Information Theory, pp.2371-2375, 2007.
    R. Smarandache and P.O. Vontobel, "On regular quasi-cyclic LDPC codes from binomials", Proc. of IEEE International Symposium on Information Theory, pp.277, 2004.
    M.E. O’Sullivan, "Algebraic construction of sparse matrices with large girth", IEEE Transactions on Information Theory, Vol.52, No.2, pp.718-727, 2006.
    R.M. Tanner, "A recursive approach to low complexity codes", IEEE Transactions on Information Theory, Vol.27, No.5, pp.533-547, 1981.
    R. Smarandache and P.O. Vontobel, "Quasi-cyclic LDPC codes: Influence of proto- and tanner-graph structure on minimum hamming distance upper bounds", IEEE Transactions on Information Theory, Vol.58, No.2, pp.585-607, 2012.
    H.J. Ryser, Combinatorial Mathematics, Wiley New York & Sons, 1963.
    K. Coolsaet, "Cyclic difference sets", available at http://www. inference.phy.cam.ac.uk/cds, 2012-11.
    D.J.C. Mackay, "Encyclopedia of Sparse Graph Codes", available at http://www.inference.phy.cam.ac.uk/mackay/codes/ data.html, 2012-9.
    X.Y. Hu, E. Eeleftheriou and D. Arnold, "Progressive edgegrowth tanner graphs", Proc. of IEEE Global Telecommunications Conference, pp.995-1001, 2001.
    L. Chen, I. Djurdjevic and J. Xu, "Construction of QC-LDPC codes based on the minimum-weight codewords of RS codes", Proc. of IEEE International Symposium on Information Theory, pp.239, 2004.
    J.L. Fan, "Array codes as low-density parity-check godes", Proce of the 2nd International Symposium on Turbo Codes and Related Topics, pp.543-546, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (244) PDF downloads(1144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return