Citation: | SUN Liping, LUO Yonglong, ZHENG Xiaoyao, et al., “Gravitational Inspired Spectral Clustering with Constraint,” Chinese Journal of Electronics, vol. 24, no. 3, pp. 487-491, 2015, doi: 10.1049/cje.2015.07.008 |
A. Adhikari and P.R. Rao, "Efficient clustering of databases induced by local patterns", Decision Support Systems, Vol.44, No.4, pp.925-943, 2008.
|
M. Andrecut, "Data clustering and visualization via energy minimization", Physics Letters A, Vol.375, No.40, pp.3499-3503, 2011.
|
V. Deufemia, M. Risi and G. Tortora, "Sketched symbol recognition using latent-dynamic conditional random fields and distance-based clustering", Pattern Recognition, Vol.47, No.3, pp.1159-1171, 2014.
|
J.C. Bezdek and R.J. Hathaway, "Clustering with relational c-means partition from pairwise distance data", Mathematical Modelling, Vol.9, No.6, pp.435-439, 1987.
|
I.A. Maraziotis, "A semi-supervised fuzzy clustering algorithm applied to gene expression data", Pattern Recognition, Vol.45, No.1, pp.637-648, 2012.
|
H.P. Lai, M. Visani, A. Boucher and J.M. Ogier, "A new interactive semi-supervised clustering model for large image database indexing", Pattern Recognition Letters, Vol.37, pp.94- 106, 2014.
|
N. Grira, M. Crucianu and N. Boujemaa, "Unsupervised and semi-supervised clustering: A brief survey", A Review of Machine Learning Techniques for Processing Multimedia Content,Report of the MUSCLE European Network of Excellence (FP6), 2004.
|
M.S. Baghshah and S.B. Shouraki, "Semi-supervised metric learning using pairwise constraints", Proc. of 2009 International Joint Conference on Artificial Intelligence, California, pp.1217-1222, 2009.
|
K.Wagstaff and C. Cardie, "Clustering with Instance-level Constraints", Proc. of the Seventeenth International Conference on Machine Learning, Citeseer, pp.1103-1110, 2000.
|
H. Xu and Z. Tian, "An optimal spectral clustering approach based on Cauchy-Schwarz divergence", Chinese Journal of Electronics, Vol.18, No.1, pp.105-108, 2009.
|
X.Y. Li and L.J. Guo, "Constructing affinity matrix in spectral clustering based on neighbor propagation", Neurocomputing, Vol.97, pp.125-130, 2012.
|
M. Beauchemin, "A density-based similarity matrix construction for spectral clustering", Neurocomputing, Vol.151, pp.835- 844, 2015.
|
T. Xia, J. Cao, Y.D. Zhang and J.T. Li, "On defining affinity graph for spectral clustering through ranking on manifolds", Neurocomputing, Vol.72, No.13, pp.3203-3211, 2009.
|
W.E. Wright, "Gravitational clustering", Pattern Recognition, Vol.9, No.3, pp.151-166, 1977.
|
Y.J. Oyang, C.Y. Chen and T.W. Yang, "A study on the hierarchical data clustering algorithm based on gravity theory", Proc. of 5th European Conference on Principles of Data Mining and Knowledge Discovery, Freiburg, Germany, pp.350-361, 2001.
|
J. Gomez, D. Dasgupta and O. Nasraoui, "A new gravitational clustering algorithm", Proc. of the Third SIAM International Conference on Data Mining, pp.83-94, 2003.
|
J. Gomez, O. Nasraoui and E. Leon, "RAIN: Data clustering using randomized interactions between data points", Proc. of 2004 International Conference on Machine Learning and Applications, pp.250-255, 2004.
|
J. Gomez, E. Leon, O. Nasraoui and F. Giraldo, "The parameter-less randomized gravitational clustering algorithm with online clusters structure characterization", Progress in Artificial Intelligence, pp.1-20, 2014.
|
A.H. Sadeghian and H. Nezamabadi-pour, "Gravitational ensemble clustering", Proc. of 2014 Iranian Conference on Intelligent Systems (ICIS), pp.1-6, 2014.
|
U. Von Luxburg, "A tutorial on spectral clustering", Statistics and computing, Vol.17, No.4, pp.395-416, 2007.
|
P. Schroeder, "Gravity from the ground up", Proc. of the NPA, pp.498-503, 2010.
|
I. Newton, Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), Cambridge Digital Library, London, 1687.
|
G. Carpaneto and P. Toth, "Algorithm 548: Solution of the assignment problem", ACM Transactions on Mathematical Software, Vol.6, No.1, pp.104-111, 1980.
|
D. Klein, S.D. Kamvar and C.D. Manning, "From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering", Proc. of the 19th International Conference on Machine Learning, Sydney, pp.307-314, 2002.
|
W.M. Rand, "Objective criteria for the evaluation of clustering methods", Journal of the American Statistical association, Vol.66, No.336, pp.846-850, 1971.
|
K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl, "Constrained K-means clustering with background knowledge", Proc. of the Eighteenth International Conference on Machine Learning, pp.577-584, 2001.
|
Q. Xu and M. Desjardins, "Constrained Spectral Clustering under a Local Proximity Structure Assumption", Proc. of the 18th International Conference of the Florida Artificial Intelligence Research Society, pp.866-867, 2005.
|