Citation: | LIU Chunhui, QI Yue, DING Wenrui. “The Data-Reusing MCC-Based Algorithm and Its Performance Analysis”. Chinese Journal of Electronics, vol. 25 no. 4. doi: 10.1049/cje.2016.06.019 |
C. Wang, M. Ma, R.D. Ying, et al., "Narrowband interference mitigation in DS-UWB Systems", IEEE Signal Processing Letters, Vol.12, No.12, pp.429-434, 2010.
|
Y. Tan, Z.Q. He and B.Y. Tian, "A Novel Generalization of Modified LMS Algorithm to Fractional Order", IEEE Signal Processing Letters, Vol.22, No.9, pp.1244-1248, 2015.
|
D.T.M. Slock, "On the convergence behavior of the LMS and the normalized LMS algorithms", IEEE Transactions on Signal Processing, Vol.41, No.9, pp.2811-2825, 1993.
|
H. Shin, A.H. Sayed and W. Song, "Variable step-size NLMS and affine projection algorithms", IEEE Signal Processing Letters, Vol.11, No.2, pp.132-135, 2004.
|
W. Liu, P. Pokharel and J. Principe, "Correntropy:Properties and applications in non-gaussian signal processing", IEEE Transactions on Signal Processing, Vol.55, No.11, pp.5286-5298, 2007.
|
A. Singh and J.C. Principe, "Using correntropy as a cost function in linear adaptive filters", Proc. of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, pp.2950-2955, 2009.
|
B. Chen, X. Lei, J. Liang, et al., "Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion", IEEE Signal Processing Letters, Vol.21, No.7, pp.880-884, 2014.
|
J.A. Apolinário, M.L.R. de Campos and P.S.R. Diniz, "Convergence analysis of the binormalized data-reusing LMS algorithm", IEEE Transactions on Signal Processing, Vol.48, No.11, pp.3235-3242, 2000.
|
T. Shao, Y.R. Zheng and J. Benesty, "An affine projection sign algorithm robust against impulsive interferences", IEEE Signal Processing Letters, Vol.17, No.4, pp.327-330, 2010.
|
S. Werner and P.S.R. Diniz, "Set-membership affine projection algorithm", IEEE Signal Processing Letters, Vol.8, No.8, pp.231-235, 2001.
|
S.J. Ban and S. Kim, "Pseudo affine projection sign algorithm for robust system identification", Electronics Letters, Vol.46, No.12, pp.865-866, 2010.
|
M.Z.A. Bhotto, M.O. Ahmad and M.N.S. Swamy, "Robust shrinkage affine-projection sign adaptive-filtering algorithms for impulsive noise environments", IEEE Transactions on Signal Processing, Vol.62, No.13, pp.3349-3359, 2014.
|
H.C. Shin, W.J. Song and A.H. Sayed, "Mean-square performance of data-reusing adaptive algorithms", IEEE Signal Processing Letters, Vol.12, No.12, pp.851-854, 2005.
|
N.R. Yousef and A.H. Sayed, "A unified approach to the steady-state and tracking analysis of adaptive filters", IEEE Transactions on Signal Processing, Vol.49, No.2, pp.314-324, 2001.
|
B. Lin, R. He, X. Wang, et al., "The steady-state mean-square error analysis for least mean p-order algorithm", IEEE Signal Processing Letters, Vol.16, No.3, pp.176-179, 2009.
|
M.Z.A. Bhotto and A. Antoniou, "A family of shrinkage adaptive-filtering algorithms", IEEE Transactions on Signal Processing, Vol.61, No.7, pp.1689-1697, 2013.
|
S. Haykin, Adaptive Filter Theory, NJ:Prentice Hall Press, Englewood Cliffs, 1996.
|
J. Arenas-García, V. Gómez-Verdejo and A.R.Figueiras-Vidal, "New algorithms for improved adaptive convex combination of LMS transversal filters", IEEE Trans. on Instrumentation and Measurement, Vol.54, No.6, pp.2239-2249, 2005.
|