XUAN Hengnong, ZHANG Runchi, SHI Shengsheng. An Efficient Cuckoo Search Algorithm for System-Level Fault Diagnosis[J]. Chinese Journal of Electronics, 2016, 25(6): 999-1004. DOI: 10.1049/cje.2016.06.035
Citation: XUAN Hengnong, ZHANG Runchi, SHI Shengsheng. An Efficient Cuckoo Search Algorithm for System-Level Fault Diagnosis[J]. Chinese Journal of Electronics, 2016, 25(6): 999-1004. DOI: 10.1049/cje.2016.06.035

An Efficient Cuckoo Search Algorithm for System-Level Fault Diagnosis

Funds: This work is supported by the National Natural Science Foundation of China (No.90718008, No.61133015).
More Information
  • Received Date: October 09, 2014
  • Revised Date: August 13, 2015
  • Published Date: November 09, 2016
  • We propose a new efficient algorithm named Cuckoo search fault diagnosis (CSFD) to solve system-level fault diagnosis problem. KMP algorithm is proposed for initialization based on the K-means partition algorithm; a fitness function is designed according to the equation constraints satisfied by the test model; the binary mapping method is advanced by optimizing existing binary mapping algorithm. Experiments show that KMP algorithm significantly reduces the disparity between the initial solution and the actual solution, and CSFD algorithm improves the efficiency and correctness significantly compared with existing typical swarm intelligence diagnosis algorithm.
  • R. Zuech, et al., "Intrusion detection and big heterogeneous data: A Survey", Journal of Big Data, Vol.2, No.1, pp.1-41, 2015.
    M. Chen, S. Mao and Y. Liu, "Big data: A survey", Mobile Networks and Applications, Vol.19, No.2, pp.171-209, 2014.
    K. Kambatla, G. Kollias, V. Kumar, et al., "Trends in big data analytics", Journal of Parallel and Distributed Computing, Vol.74, No.7, pp.2561-2573, 2014.
    FP. Preparata, G. Metze and RT. Chien, "On the connection assignment problem of diagnosable system", IEEE Trans on Electronic Computer, Vol.16, No.12, pp.848-854, 1967.
    D.F. Zhang, G.G. Xie and Y.H. Min, "Node grouping in systemlevel fault diagnosis", Journal of Computer Science and Technology, Vol.16, No.5, pp.474-479, 2001.
    H.N. Xuan, D.F. Zhang and M. Zhang, "The equation diagnosis on PMC fault model", Chinese Journal of Electronics, Vol.31, No.05, pp.694-697, 2003.
    H.N. Xuan, M. Zhang, D.F. Zhang and T.X. Zhang, "Theoretical basis of equation diagnosis about Chwa & Hakimi fault models", Computer Applications, Vol.23, No.04, pp.16-18, 2003.
    H.N. Xuan, et al., "The fault diagnosis algorithm and it's application about PMC model based on ex-test", Chinese Journal of Electronics, Vol.35, No.5, pp.987-990, 2007.
    M. Elhadef, et al., "An evolutionary algorithm for identifying faults in t-diagnosable systems", Reliable Distributed Systems the 19th IEEE Symposium, Nurnberg, Germany, pp.74-83, 2000.
    W. Deng, X.F. Yang and Z.F. Wu, "An efficient genetic algorithm for system-level diagnosis", Chinese Journal of Computers, Vol.30, No.7, pp.1115-1124, 2007.
    R. Falcon, M. Almeida and A. Nayak, "A binary particle swarm optimization approach to fault diagnosis in parallel and distributed systems", Evolutionary Computation 2010 IEEE Congress, Barcelona, Spain, pp.1-8, 2010.
    R. Falcon, et al., "Fault identification with binary adaptive fireflies in parallel and distributed systems", Evolutionary Computation 2011 IEEE Congress, New Orleans, USA, pp.1359-1366, 2011.
    H.N. Xuan, R.C. Zhang, M. Zuo and T.T. Liu, "A hierarchical fault diagnosis algorithm for data center networks", Chinese Journal of Electronics, Vol.42, No.12, pp.2536-2542, 2014.
    X.S. Yang and S. Deb, "Cuckoo search via Lévy flights", Nature & Biologically Inspired Computing 2009 World Congress, Coimbatore, India, pp.210-214, 2009.
    X.S. Yang and S. Deb, "Engineering optimisation by cuckoo search", International Journal of Mathematical Modelling and Numerical Optimisation, Vol.1, No.4, pp.330-343, 2010.
  • Related Articles

    [1]ZHANG Jing, TIAN Jing, WEN Tao, YANG Xiaohui, RAO Yong, XU Xiaobin. Deep Fault Diagnosis for Rotating Machinery with Scarce Labeled Samples[J]. Chinese Journal of Electronics, 2020, 29(4): 693-704. DOI: 10.1049/cje.2020.05.016
    [2]ZHANG Long, LIU Min, HAO Jinghua, WANG Xionghai, DONG Jun. Scheduling Semiconductor Wafer Fabrication Using a New Harmony Search Algorithm Based on Receipt Priority Interval[J]. Chinese Journal of Electronics, 2016, 25(5): 866-872. DOI: 10.1049/cje.2016.08.043
    [3]WANG Jun, PENG Hong, TU Min, Pérez-Jiménez J. Mario, SHI Peng. A Fault Diagnosis Method of Power Systems Based on an Improved Adaptive Fuzzy Spiking Neural P Systems and PSO Algorithms[J]. Chinese Journal of Electronics, 2016, 25(2): 320-327. DOI: 10.1049/cje.2016.03.019
    [4]TRAN Dang Cong, WU Zhijian, WANG Zelin, DENG Changshou. A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Means[J]. Chinese Journal of Electronics, 2015, 24(4): 694-701. DOI: 10.1049/cje.2015.10.006
    [5]WANG Anna, SHA Mo, LIU Limei, CHU Maoxiang. A New Process Industry Fault Diagnosis Algorithm Based on Ensemble Improved Binary-Tree SVM[J]. Chinese Journal of Electronics, 2015, 24(2): 258-262. DOI: 10.1049/cje.2015.04.006
    [6]LANG Rongling, WANG Yuan, GAO Fei, Pan Lei. Fault Diagnosis of Airborne Equipments Based on Similarity Search[J]. Chinese Journal of Electronics, 2013, 22(4): 855-860.
    [7]WANG Panpan, SHI Liping, ZHANG Yong, HAN Li. A Hybrid Simplex Search and Modified Bare-bones Particle Swarm Optimization[J]. Chinese Journal of Electronics, 2013, 22(1): 104-108.
    [8]BAI Tian, C.A. Kulikowski, GONG Leiguang, YANG Bin, HUANG Lan, ZHOU Chunguang. A Global K-modes Algorithm for Clustering Categorical Data[J]. Chinese Journal of Electronics, 2012, 21(3): 460-465.
    [9]LIU Changan, LIU Fei, LIU Chunyang, WU Hua. Multi-agent Reinforcement Learning Based on K-Means Algorithm[J]. Chinese Journal of Electronics, 2011, 20(3): 414-418.
    [10]YE Ning, WANG Ruchuan. A Sensor Network-Based Data Stream Clustering Algorithm for Pervasive Computing[J]. Chinese Journal of Electronics, 2009, 18(2): 255-258.
  • Cited by

    Periodical cited type(8)

    1. Rautray, R., Dash, R., Dash, R. et al. A Review on Metaheuristic Approaches for Optimization Problems. Studies in Computational Intelligence, 2024. DOI:10.1007/978-981-99-8853-2_3
    2. Yang, Q., Huang, H., Zhang, J. et al. A collaborative cuckoo search algorithm with modified operation mode. Engineering Applications of Artificial Intelligence, 2023. DOI:10.1016/j.engappai.2023.106006
    3. Zhao, S.-J., Gao, L.-F., Yu, D.-M. et al. Improved Crow Search Algorithm Based on Variable-Factor Weighted Learning and Adjacent-Generations Dimension Crossover Strategy | [基于变因子加权学习与邻代维度交叉策略的改进CSA算法]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47(1): 40-48. DOI:10.3969/j.issn.0372-2112.2019.01.006
    4. Du, W., Zhou, J., Wang, Z. et al. Application of improved singular spectrum decomposition method for composite fault diagnosis of gear boxes. Sensors (Switzerland), 2018, 18(11): 3804. DOI:10.3390/s18113804
    5. Liu, S., Wang, P., Zhang, J. An improved biogeography-based optimization algorithm for blocking flow shop scheduling problem. Chinese Journal of Electronics, 2018, 27(2): 351-358. DOI:10.1049/cje.2018.01.007
    6. Meng, Q., Lei, Z., He, D. et al. Application of KMP algorithm in customized flow analysis. 2017. DOI:10.1109/CompComm.2017.8322953
    7. Vijayalakshmi, M., Reddy, K.R. Semi-weighting PTS PAPR reduction method in OFDM systems by Modified Cuckoo Search algorithm. 2017. DOI:10.1109/WiSPNET.2017.8299759
    8. Chiang, C.-L.. Power economic/eenvironmental dispatch problem using Cuckoo search algorithm. 2017. DOI:10.1109/ICSAI.2017.8248327

    Other cited types(0)

Catalog

    Article Metrics

    Article views (677) PDF downloads (552) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return