Citation: | OU Shifeng, SONG Peng, GAO Ying. Laplacian Speech Model and Soft Decision Based MMSE Estimator for Noise Power Spectral Density in Speech Enhancement[J]. Chinese Journal of Electronics, 2018, 27(6): 1214-1220. DOI: 10.1049/cje.2018.09.009 |
C. Zhang, G.S. Morrison, E. Enzinger, et al., “Effects of telephone transmission on the performance of formanttrajectorbased forensic voice comparison—Female voices”, Speech Communication, Vol.55, No.6, pp.796-813, 2013.
|
K. Li, Q. Fu and Y. Yan, “Speech enhancement using robust generalized sidelobe canceller with multi-channel postfiltering in adverse environments”, Chinese Journal of Electronics, Vol.21, No.1, pp.85-90, 2012.
|
N. Yousefian, P.C. Loizou and J.H.L. Hansen, “A coherencebased noise reduction algorithm for binaural hearing aids”, Speech Communication, Vol.58, No.1, pp.101-110, 2014.
|
P.C. Loizou, Speech Enhancement: Theory and Practice (The 2nd ed). New York: CRC Press, 2013.
|
S.F. Boll, “Suppression of acoustic noise in speech using spectral subtraction”, IEEE Transactions on Acoustics, Speech, Signal Processing, Vol.27, No.2, pp.113-120, 1979.
|
I.Y. Soon and S.N. Koh, “Speech enhancement using 2-D Fourier transform”, IEEE Transactions on Speech and Audio Processing, Vol.11, No.6, pp.717-724, 2003.
|
H. Veisi and H. Sameti, “Speech enhancement using hidden Markov models in Mel-frequency domain”, Speech Communication, Vol.55, No.2, pp.205-220, 2013.
|
A. Saadoune, et al., “Perceptual subspace speech enhancement using variance of the reconstruction error”, Digital Signal Processing, Vol.24, No.1, pp.187-196, 2014.
|
X. Hu, S. Wang, et al., “A cepstrum-based preprocessing and postprocessing for speech enhancement in adverse environments”, Applied Acoustics, Vol.74, No.12, pp.1458-1462, 2013.
|
J. Chang, N.S. Kim and S.K. Mitra, “Voice activity detection based on multiple statistical models ”, IEEE Transactions on Signal Processing, Vol.54, No.6, pp.1965-1976, 2006.
|
M.W. Mak and H.B. Yu, “A study of voice activity detection techniques for NIST speaker recognition evaluations”, Computer Speech and Language, Vol.28, No.1, pp.295-313, 2014.
|
R. Martin, “Noise power spectral density estimation based on optimal smoothing and minimum statistics”, IEEE Transactions on Speech and Audio Processing, Vol.9, No.5, pp.504-512, 2001.
|
I. Cohen and B. Berdugo, “Noise estimation by minima controlled recursive averaging for robust speech enhancement”, IEEE Signal Processing Letters, Vol.9, No.1, pp.12-15, 2002.
|
I. Cohen, “Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging”, IEEE Transactions on Speech and Audio Processing, Vol.1, No.5, pp.466-475, 2003.
|
J.M. Kum, Y.S. Park and J.H. Chang, “Speech enhancement based on minima controlled recursive averaging incorporating conditional maximum a posteriori criterion”, IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, pp.4417-4420, 2009.
|
N. Fan, J. Rosca and R. Bala, “Speech noise estimation using enhanced minima controlled recursive averaging”, IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, Hawaii, USA, pp.581-584, 2007.
|
T. Gerkmann and R.C. Hendriks, “Unbiased MMSE-based noise power estimation with low complexity and low tracking delay”, IEEE Transactions on Audio, Speech, and Language Processing, Vol.20, No.4, pp.1383-1393, 2012.
|
R. Yu, “A low-complexity noise estimation algorithm based on smoothing of noise power estimation and estimation bias correction”, IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, pp.4421-4424, 2009.
|
R.C. Hendriks, R. Heusdens and J. Jensen, “MMSE based noise PSD tracking with low complexity ”, IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, Texas, USA, pp.4266-4269, 2010.
|
Y.S. Park and J.H. Chang, “A probabilistic combination method of minimum statistics and soft decision for robust noise power estimation in speech enhancement”, IEEE Signal Processing Letters, Vol.15, No.1, pp.95-98, 2008.
|
R.C. Hendriks, et al., “Noise tracking using DFT domain subspace decompositions”, IEEE Transactions on Audio, Speech, and Language Processing, Vol.16, No.3, pp.541-553, 2008.
|
J. Taghia, J. Taghia, N. Mohammadiha, et al., “An evaluation of noise power spectral density estimation algorithms in adverse acoustic environments”, IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, pp.4640-4643, 2011.
|
1. | Yang, N., Liu, Y., Wei, Y. et al. Iterative Laplace of Gaussian filter and improved Teager energy operator for bearing fault detection in gearboxes. Measurement Science and Technology, 2024, 35(9): 096135. DOI:10.1088/1361-6501/ad5903 | |
2. | Feng, K., Yang, R., Wei, Z. An optimized Laplacian of Gaussian filter using improved sparrow search algorithm for bearing fault extraction. Measurement Science and Technology, 2024, 35(3): 036105. DOI:10.1088/1361-6501/ad1477 | |
3. | Yuan, W.-H., Hu, S.-D., Shi, Y.-L. et al. A Convolutional Gated Recurrent Network for Speech Enhancement | [一种用于语音增强的卷积门控循环网络]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48(7): 1276-1283. DOI:10.3969/j.issn.0372-2112.2020.07.005 |