Volume 31 Issue 3
May  2022
Turn off MathJax
Article Contents
KOU Wei, LIANG Shixiong, ZHOU Hongji, et al., “A Review of Terahertz Sources Based on Planar Schottky Diodes,” Chinese Journal of Electronics, vol. 31, no. 3, pp. 467-487, 2022, doi: 10.1049/cje.2021.00.302
Citation: KOU Wei, LIANG Shixiong, ZHOU Hongji, et al., “A Review of Terahertz Sources Based on Planar Schottky Diodes,” Chinese Journal of Electronics, vol. 31, no. 3, pp. 467-487, 2022, doi: 10.1049/cje.2021.00.302

A Review of Terahertz Sources Based on Planar Schottky Diodes

doi: 10.1049/cje.2021.00.302
Funds:  This work was supported by the National Key Research and Development Program of China (2018YFB1801503), National Natural Science Foundation of China (61931006, U20A20212, 61901093, 61871419, 61771327, 61921002), and Sichuan Science and Technology Program (2020JDRC0028).
More Information
  • Author Bio:

    received the B.S. degree in electronic and information engineering from the Three Gorges University, Yichang, China, in 2016, and he is currently pursuing the Ph.D. degree in physical electronics with the School of Electronic Science and Engineering in the University of Electronic Science and Technology of China, Chengdu, China. His research interests mainly include terahertz metasurfaces and solid state devices. (Email: 1973877445@qq.com)

    (corresponding author) Ph.D., is currently a Senior Engineer with the Hebei Semi-conductor Research Institute Shijiazhuang in China. His research interests mainly include terahertz solid-state devices. (Email: 412772993@qq.com)

    is an M.D. candidate of University of Electronic Science and Technology of China. His research interests include terahertz solid-state devices and metamaterials and microwave passive components

    is a P.D. candidate of University of Electronic Science and Technology of China. His research interests include terahertz solid-state devices and microwave monolithic integrated circuits

    (corresponding author) Ph.D., is a Professor in University of Electronic Science and Technology of China. His research interests mainly include terahertz solid-state devices and metamaterials. (triwoods.uestc@163.com)

    Ph.D., is a Professor in University of Electronic Science and Technology of China. His research interests include microwave monolithic integrated circuits, microwave passive components, antennas, and metamaterials

    received the M.E. degree and Ph.D. degree in optics from the School of Electronic Science and Engineering in the University of Electronic Science and Technology of China, Chengdu, China. His research interests mainly include THz metasurface and THz communication systems

  • Received Date: 2021-08-25
  • Accepted Date: 2021-10-08
  • Available Online: 2022-02-23
  • Publish Date: 2022-05-05
  • The special position of terahertz wave in the electromagnetic spectrum makes it possess the characteristics of orientation, broadband, penetration and low energy, which promotes the extensive research of terahertz wave in the fields of communication, radar, imaging, sensing, security inspection and so on. The solid-state terahertz sources based on semiconductor devices have attracted extensive attention in the field of terahertz information technology due to their characteristics such as being able to work at room temperature, being small in size, being easy to integrate and having good frequency stability. Terahertz planar Schottky diode is a kind of low parasitic semiconductor device. Its high cutoff frequency makes it work well in the terahertz range. The frequency multiplier based on planar Schottky diode is an important part of terahertz solid state source. In this review, the development of Schottky diodes technology in recent years have been introduced, including the structures and preparation of Schottky diodes. In addition, the current situation and performance of different types of terahertz sources based on Schottky diodes are further introduced, and the future development trend is discussed.
  • loading
  • [1]
    J. W. Waters, W. G.Read, L. Froidevaux, et al., “The UARS and EOS microwave limb sounder (MLS) experiments,” Journal of the Atmospheric Sciences, vol.56, no.2, pp.194–218, 1999. doi: 10.1175/1520-0469(1999)056<0194:TUAEML>2.0.CO;2
    [2]
    J. W. Waters, L. Froidevaux, R. S. Harwood, et al., “The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Transactions on Geoscience and Remote Sensing, vol.44, no.5, pp.1075–1092, 2006. doi: 10.1109/TGRS.2006.873771
    [3]
    Chattopadhyay, Goutam, "Terahertz antennas and systems for space borne platforms,” in Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, pp.1–7, 2010.
    [4]
    Y. J. Hwang, C. C. Chiong, T. Huang, et al., “Development of band-1 receiver cartridge for Atacama large millimeter/submillimeter array (ALMA),” in Proc. SPIE 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montréal, Quebec, Canada, article no.91532H, 2014.
    [5]
    P. H. Siegel, “Terahertz Technology,” IEEE Transactions on Microwave Theory and Techniques, vol.50, no.3, pp.910–928, 2006.
    [6]
    R. W. Ziolkowski and N. Engheta, “Metamaterials: Two decades past and into their electromagnetics future and beyond,” IEEE Transactions on Antennas and Propagation, vol.68, no.3, pp.1232–1237, 2020.
    [7]
    M. Shur, “Terahertz technology: Devices and applications,” in Proceedings of the 31st European Solid-State Circuits Conference, Grenoble, France, pp.13–21, 2005.
    [8]
    R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proceedings of the IEEE, vol.95, no.8, pp.1683–1690, 2007. doi: 10.1109/JPROC.2007.898832
    [9]
    R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Transactions on Antennas and Propagation, vol.55, no.11, pp.2944–2956, 2007. doi: 10.1109/TAP.2007.908543
    [10]
    K. B. Cooper, R. J. Dengler, N. Llombart, et al., “THz imaging radar for standoff personnel screening,” IEEE Transactions on Terahertz Science and Technology, vol.1, no.1, pp.169–182, 2011. doi: 10.1109/TTHZ.2011.2159556
    [11]
    F. Friederich, W. V. Spiegel, M. Bauer, et al., “THz active imaging systems with real-time capabilities,” IEEE Transactions on Terahertz Science and Technology, vol.1, no.1, pp.183–200, 2011. doi: 10.1109/TTHZ.2011.2159559
    [12]
    H. -B. Liu, H. Zhong, N. Karpowicz, et al., “Terahertz spectroscopy and imaging for defense and security applications,” Proceedings of the IEEE, vol.95, no.8, pp.1514–1527, 2007. doi: 10.1109/JPROC.2007.898903
    [13]
    A. Arora, T. Q. Luong, M. Krüger, et al., “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst, vol.137, no.3, pp.575–579, 2012. doi: 10.1039/C2AN15820E
    [14]
    E. Pickwell, V. P. Wallace, B. E. Cole, et al., “Using terahertz pulsed imaging to measure enamel demineralisation in teeth,” in Proceedings of 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, pp. 578−578, 2006.
    [15]
    O. Spathmann, M. Zang, J. Streckert, et al., “Numerical computation of temperature elevation in human skin due to electromagnetic exposure in the THz frequency range,” IEEE Transactions on Terahertz Science and Technology, vol.5, no.6, pp.978–989, 2015.
    [16]
    Y. Nakasha, M. Sato, T. Tajima, et al., “W-band transmitter and receiver for 10-Gb/s impulse radio with an optical-fiber interface,” IEEE Transactions on Microwave Theory and Techniques, vol.57, no.12, pp.3171–3180, 2009. doi: 10.1109/TMTT.2009.2033242
    [17]
    S. Emami, R. F. Wiser, E. Ali, et al., “A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” in Proceedings of 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp.164–166, 2011.
    [18]
    A. Valdes-Garcia, S. Reynolds, A. Natarajan, et al., “Single-element and phased-array transceiver chipsets for 60-GHz Gb/s communications,” IEEE Communications Magazine, vol.49, no.4, pp.120–131, 2011. doi: 10.1109/MCOM.2011.5741156
    [19]
    K. Okada, N. Li, K. Matsushita, et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c,” IEEE Journal of Solid-State Circuits, vol.46, no.12, pp.2988–3004, 2011. doi: 10.1109/JSSC.2011.2166184
    [20]
    M. Weiss, A. Stohr, F. Lecoche, et al., “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in Proc. of 2009 Int. Topical Meeting on Microwave Photonics, Valencia, Spain, pp.1–3, 2009.
    [21]
    T. Reck, J. Siles, C. Jung, et al., “Array technology for terahertz imaging,” in Proc. SPIE 8362, Passive and Active Millimeter-Wave Imaging XV, Baltimore, Maryland, USA, article no.936202, 2012.
    [22]
    K. B. Cooper, T. A. Reck, C. Jung-Kubiak, et al, “Transceiver array development for submillimeter-wave imaging radars,” in Proc. SPIE 8715, Passive and Active Millimeter-Wave Imaging XVI, Baltimore, Maryland, USA, article no.87150A, 2013.
    [23]
    M. Kowalski, M. Piszczek, N. Palka, et al. “Improvement of passive THz camera images,” in Proc. SPIE 8544, Millimetre Wave and Terahertz Sensors and Technology V, Edinburgh, UK, article no.85440N, 2012.
    [24]
    A. Hirata, R. Yamaguchi, T. Kosugi, et al., “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Transactions on Microwave Theory and Techniques, vol.57, no.5, pp.1102–1109, 2009. doi: 10.1109/TMTT.2009.2017256
    [25]
    H. Takahashi, T. Kosugi, A. Hirata, et al., “10-Gbit/s BPSK modulator and demodulator for a 120-GHz-band wireless link,” IEEE Transactions on Microwave Theory and Techniques, vol.59, no.5, pp.1361–1368, 2011. doi: 10.1109/TMTT.2010.2097603
    [26]
    H. Takahashi, T. Kosugi, A. Hirata, et al., “10-Gbit/s quadrature phase-shift-keying modulator and demodulator for 120-GHz-band wireless links,” IEEE Transactions on Microwave Theory and Techniques, vol.58, no.12, pp.4072–4078, 2010.
    [27]
    H. Takahashi, T. Kosugi, A. Hirata, et al., “120-GHz-band fully integrated wireless link using QSPK for realtime 10-Gbit/s transmission,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.12, pp.4745–4753, 2013. doi: 10.1109/TMTT.2013.2285354
    [28]
    A. Hirata, T. Kosugi, H. Takahashi, et al., “120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission,” IEEE Transactions on Microwave Theory and Techniques, vol.60, no.3, pp.881–895, 2012. doi: 10.1109/TMTT.2011.2178256
    [29]
    I. Kallfass, F. Boes, T. Messinger, et al., “64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency,” Journal of Infrared, Millimeter, and Terahertz Waves, vol.36, no.2, pp.221–233, 2015. doi: 10.1007/s10762-014-0140-6
    [30]
    T. W. Crowe, W. L. Bishop, D. W. Porterfield, et al., “Opening the terahertz window with integrated diode circuits,” IEEE Journal of Solid-State Circuits, vol.40, no.10, pp.2104–2110, 2005. doi: 10.1109/JSSC.2005.854599
    [31]
    Shur, Michael. “Terahertz technology: Devices and applications,” in Proceedings of the 31st European Solid-State Circuits Conference, Grenoble, France, pp.13−21, 2005.
    [32]
    J. Rieh, S. Jeon, and M. Kim, “An overview of integrated THz electronics for communication applications,” in Proceedings of 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, Korea (South), pp.1−4, 2011.
    [33]
    A.Y. Pawar, D. D. Sonawane, K. B. Erande, et al., “Terahertz technology and its applications,” Drug Invention Today, vol.5, no.2, pp.157–163, 2013. doi: 10.1016/j.dit.2013.03.009
    [34]
    E. R. Mueller, R. Henschke, W. E. Robotham Jr, et al., “Terahertz local oscillator for the Microwave Limb Sounder on the Aura satellite,” Applied Optics, vol.46, no.2, pp.4907–4915, 2007.
    [35]
    K. Y. Kim, A. J. Taylor, J. H. Glownia, et al., “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nature Photonics, vol.2, no.10, pp.605–609, 2008. doi: 10.1038/nphoton.2008.153
    [36]
    C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Applied Physics Letters, vol.30, no.2, pp.84–86, 1977. doi: 10.1063/1.89297
    [37]
    J. P. Negel, R. Hegenbarth, A. Steinmann, et al., “Compact and cost-effective scheme for THz generation via optical rectification in GaP and GaAs using novel fs laser oscillators,” Applied Physics B, vol.103, no.1, pp.45–50, 2011. doi: 10.1007/s00340-011-4385-7
    [38]
    K. L. Vodopyanov, “Optical THz‐wave generation with periodically‐inverted GaAs,” Laser & Photonics Reviews, vol.2, no.1, pp.11–25, 2008.
    [39]
    G. Malcolm, “New laser sources benefit terahertz and mid-infrared remote sensing,” SPIE Newsroom, DOI: 10.1117/2.1200710.0842, 2007-10-7.
    [40]
    M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol.1, no.2, pp.97–105, 2007. doi: 10.1038/nphoton.2007.3
    [41]
    P. Hu, W. Lei, Y. Jiang, et al., “Development of a 0.32-THz folded waveguide traveling wave tube,” IEEE Transactions on Electron Devices, vol.65, no.6, pp.2164–2169, 2018. doi: 10.1109/TED.2017.2787682
    [42]
    N. Kumar, U. Singh, A. Bera, et al., “A review on the sub-THz/THz gyrotrons,” Infrared Physics & Technology, vol.76, pp.38–51, 2016. doi: 10.1016/j.infrared.2016.01.015
    [43]
    M. Hruszowiec, K. Nowak, B. Szlachetko, et al., “The Microwave Sources for EPR Spectroscopy,” Journal of Telecommunications and Information Technology, vol.2017, no.2, pp.18–25, 2017. doi: 10.26636/jtit.2017.107616
    [44]
    J. H. Booske, R. J. Dobbs, C. D. Joye, et al., “Vacuum electronic high power terahertz sources,” IEEE Transactions on Terahertz Science and Technology, vol.1, no.1, pp.54–75, 2011. doi: 10.1109/TTHZ.2011.2151610
    [45]
    H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electronics Letters, vol.46, no.26, pp.8–11, 2010. doi: 10.1049/el.2010.3319
    [46]
    P. M. Smith, S. M. Liu, M. Y. Kao, et al., “W-band high efficiency InP-based power HEMT with 600 GHz fmax,” IEEE Microwave and Guided Wave Letters, vol.5, no.7, pp.230–232, 1995. doi: 10.1109/75.392284
    [47]
    W. Hafez and M. Feng, “Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600 GHz,” Applied Physics Letters, vol.86, no.15, article no.152101, 2005. doi: 10.1063/1.1897831
    [48]
    M. Rodwell, Ed., High Speed Integrated Circuit Technology-Towards 100 Ghz Logic (Selected Topics in Electronics and Systems, vol.21), Singapore: World Scientific, 2001.
    [49]
    L. Gatilova, A. Maestrini, J. Treuttel, et al., “Recent progress in the development of French THz Schottky diodes for astrophysics, planetology and atmospheric study,” 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, pp.1–2, 2019.
    [50]
    A. Maestrini, “Frequency multipliers for local oscillators at THz frequencies,” 4th ESA Workshop on Millimetre Wave Technology and Applications, Espoo, Finland, pp.1–6, 2006.
    [51]
    K. S. Saini, “Development of frequency multiplier technology for ALMA,” Ph.D. Dissertation, The University of Virginia, USA, 2003.
    [52]
    H. Wang, “Design and modeling of monolithic circuits Schottky diode on a GaAs substrate at millimeter and submillimeter wavelengths heterodyne receivers for multi-pixel and on board satellites dedicated to planetary aeronomy,” Doctor Thesis, University of P&M Curie, Paris, 2009.
    [53]
    A. Maestrini, J. Ward, G. Chattopadhyay, et al., “Terahertz sources based on frequency multiplication and their applications,” Frequenz, vol.62, no.5, pp.118–122, 2008.
    [54]
    K. Braun, “On the current conduction in metal sulphides,” Ann. Phys. Chem., vol.153, no.556, 1874. (in German)
    [55]
    W. Schottky, “Halbleitertheorie der Sperrschic-ht,” The Science of Nature, vol.26, no.52, pp.843–843, 1938.
    [56]
    J. Bose, “Detector for electrical disturbances,” Patent, No.755840, USA, 1904-3-29.
    [57]
    D. L. Sengupta, K. S. TAPAN, and S. Dipakar, “Centennial of the semiconductor diode detector,” Proceedings of the IEEE, vol.86, no.1, pp.235–243, 1998. doi: 10.1109/5.658775
    [58]
    R. Zimmermann, R. Zimmermann, and P. Zimmermann, “All-solid-state radiometers for environmental studies to 700 GHz,” Third International Symposium on Space Terahertz Technology, pp.706–723, 1992.
    [59]
    S. D. Vogel, “Analysis of a diode mounting structure of a subharmonically pumped millimeter-wave mixer,” in Proc. SPIE 2104, 18th Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, article no.21046M, 1993.
    [60]
    W. L. Bishop, K. McKinney, R. J. Mattauch, et al., “A novel whiskerless Schottky diode for millimeter and sub-millimeter wave application,” in Proc. of 1987 IEEE MTT-S Int. Microw. Symp. Dig., Palo Alto, CA, USA, pp.607–610, 1987.
    [61]
    A. Maestrini, D. Pukala, F. Maiwald, et al., “Cryogenic operations of GaAs based multiplier chains to 400 GHz,” in Proc. of 8th Int. Conf. Terahertz Electron., Darmstadt, Germany, pp.81–84, 2000.
    [62]
    J. Zhang, P. Piironen, J. T. Louhi, et al., “Wide-band equivalent circuit of quasi-vertical planar Schottky diode for 650 GHz subharmonic mixers,” in Proceedings of the 5th International Workshop on Terahertz Electronics, Grenoble, France, pp.18–19, 1997.
    [63]
    C. I. Lin, M. Rodriguez-Girones, A. Simon, et al., “Anti-parallel planar Schottky diodes for subharmonically-pumped 220 GHz/Mixer,” in Proceedings of 10th International Symposium on Space Terahertz Technology, Charlottesville, Virginia, USA, pp.86–94, 1999.
    [64]
    S. Martin, B. Nakamura, A. Fung, et al., “Fabrication of 200 GHz to 2700 GHz multipliers devices using GaAs and metal membranes,” in Proc. of 2001 IEEE MTT-S Int. Microwave Symp. Digest (Cat. No.01CH37157), Phoenix, AZ, USA, vol.3, pp.1641–1644, 2001.
    [65]
    X. Dong, Z. Feng, J. Wang, et al., “THz GaAs Schottky diodes with point support airbridye structure,” Semiconductor Technology, vol.38, no.4, pp.279–282, 2013.
    [66]
    L. I. Qian, A. N. Ning, X. Tong, et al., “Planar Schottky barrier diode with cut-off frequency of 8.7 THz,” Journal of Terahertz Science and Electronic Information Technology, vol.13, no.5, pp.679–683, 2015.
    [67]
    Liang, S., et al., “Terahertz Schottky barrier diodes based on homoepitaxial GaN materials,” in Proceedings of 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, pp.1–2, 2015.
    [68]
    T. Takada, M. Ohmori, “Frequency triplers and quadruplers with GaAs Schottky-barrier diodes at 450 and 600 GHz,” IEEE Transactions on Microwave Theory Techniques, vol.27, no.5, pp.519–523, 1979. doi: 10.1109/TMTT.1979.1129660
    [69]
    J. W. Archer, “Millimeter wavelength frequency multipliers,” IEEE Transactions on Microwave Theory & Techniques, vol.29, no.9, pp.552–557, 1981.
    [70]
    O. Cojocari, C. Sydlo, H.-L. Hartnagel, et al., “Schottky-structures for THz-application based on quasi-vertical design-concept,” in Proc. of 16th Int. Symp. Space THz Technol., Göteborg, Sweden, pp.490–495, 2005.
    [71]
    O. Cojocari, I. Oprea, H. Gibson, et al., “Sub mm-wave multipliers by thin-diode technology,” in Proceedings of 2016 46th European Microwave Conference (EuMC), London, UK, pp.337–340, 2016.
    [72]
    V. Drakinskiy, H. Zhao, P. Nilsson, et al., “Low noise GaAs Schottky TMIC and InP Hemt MMIC based receivers for the ISMAR and SWI instruments,” in Proc. of Micro- and Millimetre Wave Technology and Techniques Workshop 2014, Noordwijk, Netherlands, pp.25–27, 2014.
    [73]
    B. Alderman, M. Henry, H. Sanghera, et al., “Schottky diode technology at Rutherford Appleton Laboratory,” in Proc. IEEE Int. Conf. Microw. Technol. Comput. Electromagnetics, Beijing, China, pp.4–6, 2011.
    [74]
    Z. Chen, B. Zhang, X. Yang, et al., “Development of a 220-GHz Schottky diode subharmonic mixer,” in Proceedings of 23rd International Symposium on Space Terahertz Technology, Tokyo, Japan, available at: https://www.nrao.edu/meetings/isstt/papers/2012/2012097099.pdf, 2012.
    [75]
    T. W. Crowe, J. L. Hesler, C. Pouzou, et al., “Development and characterization of a 2.7 THz LO source,” in Proc. 12nd Int. Symp. Space THz Technol., Oxford, UK, pp.320–329, 2011.
    [76]
    L. Zhang, S. Liang, D. Yang, et al., “A 300 GHz balanced doubler based on planar Schottky diodes,” Application of Electronic Technique, vol.45, no.7, pp.14–18, 2019.
    [77]
    B. Alderman, M. Henry, H. Sanghera, et al., “A frequency doubler to 170 GHz, using Schottky diodes transferred to a quartz substrate, with a power conversion efficiency of 29%,” in Proc. 5th ESA Workshop Millim. Wave Technol. Appl., Noordwijk, Netherlands, pp.18–20, 2009.
    [78]
    S. M. Marazita, W. L. Bishop, T. M. Cunningham, et al., “Planar GaAs Schottky barrier diode,” in Proc. 8th Int. Symp. Space THz Technol., Harvard University, USA, pp.208–223, 1997.
    [79]
    N. Erickson, “High efficiency submillimeter frequency multipliers,” in Proceedings of IEEE International Digest on Microwave Symposium, Dallas, TX, USA, vol.3, pp.1301–1304, 1990.
    [80]
    D. W. Porterfield, T. W. Crowe, R. F. Bradley, et al., “A high-power fixed-tuned millimeter-wave balanced frequency doubler,” IEEE Transactions on Microwave theory and techniques, vol.47, no.4, pp.419–425, 1999. doi: 10.1109/22.754875
    [81]
    W. D. Porterfield, “A 200 GHz broadband, fixed-tuned, planar doubler,” 10th Int. Symp. on Space Terahertz Technology, Charlottesville, VA, USA, pp.1–9, 1999.
    [82]
    W. D. Porterfield, “High-efficiency terahertz frequency triplers,” 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, pp.337–340, 2007.
    [83]
    E. Schlecht, G. Chattopadhyay, A. Maestrini, et al., “200, 400 and 800 GHz Schottky diode, substrateless multipliers: Design and results,” in Proc. of 2001 IEEE MTT-S Int. Microwave Symp. Digest (Cat. No.01CH37157), Phoenix, AZ, USA, vol.3, pp.1649–1652, 2001.
    [84]
    S. A. Maas, Non-Linear Microwave Circuits, ArtechHouse, pp.397–447, 1988.
    [85]
    M. Faber, J. Chramiec, and M. Adamski, Microw. Millimeter-Wave Diode Frequency Multipliers, Norwood, MA: Artech House, 1995.
    [86]
    J. Tuovinen and R. E. Neal, “Analysis of a 170-GHz frequency doubler with an array of planar diodes,” IEEE Trans. on Microwave Theory and Tech., vol.43, no.4, pp.962–968, 1995. doi: 10.1109/22.375261
    [87]
    C. Zhao, “Modelling and characterisation of a broadband 85/170 GHz Schottky varactor frequency doubler,” M.S. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2011.
    [88]
    H. Liu, J. Powell, C. Viegas, et al., “A 332GHz frequency doubler using flip-chip mounted planar Schottky diodes,” 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, pp.1–3, 2015.
    [89]
    C. G. Pérez-Moreno, J. Grajal, C. Viegas, et al., “Thermal analysis of high-power millimeter-wave Schottky diode frequency multipliers,” 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, Finland, pp.1–4, 2016.
    [90]
    C. Viegas, B. Alderman, C. G. Pérez-Moreno, et al., “Design and thermal analysis of a high-power frequency doubler at 160 GHz,” 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), New Delhi, India, pp.1–3, 2016.
    [91]
    H. Liu, J. Powell, C. Viegas, et al., “A 40 to 160 GHz high power multiplier chain using planar Schottky diodes,” 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), Cardiff, UK, pp.1–3, 2015.
    [92]
    C. F. Yao, M. Zhou, Y. S. Luo, et al., “A 190~225GHz high efficiency Schottky diode doubler with circuit substrate flip-chip mounted,” Journal of Infrared & Millimeter Waves, vol.34, no.1, pp.6–9, 2015.
    [93]
    Z. Chen, H. Wang, B. Alderman, et al., “190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate,” IEICE Electronics Express, vol.13, no.22, pp.1–12, 2016.
    [94]
    K. Cheng, Y. Zhang, J. H. Cui, et al., “A 135-190 GHz broadband self-biased frequency doubler using four-anode Schottky diodes,” Micromachines, vol.10, no.4, article no.277, 2019. doi: 10.3390/mi10040277
    [95]
    N. Erickson, “High efficiency submillimeter frequency multipliers,” IEEE International Digest on Microwave Symposium, Dallas, TX, USA, vol.3, pp.1301–1304, 1990.
    [96]
    H. Wang, D. Pardo, M. Merritt, et al., “280 GHz frequency multiplied source for meteorological Doppler radar applications,” 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), Cardiff, UK, pp.1–4, 2015.
    [97]
    C. Guo, X. Shang, M. J. Lancaster, et al., “A 135–150-GHz frequency tripler with waveguide filter matching,” IEEE Trans. on Microwave Theory and Tech., vol.66, no.10, pp.4608–461, 2018. doi: 10.1109/TMTT.2018.2855172
    [98]
    C. Guo, Y. Dhayalan, X. Shang, et al., “A 135–150-GHz frequency tripler using SU-8 micromachined WR-5 waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol.68, no.3, pp.1035–1044, 2019.
    [99]
    J. Meng, D. H. Zhang, C. F. Yao, et al., “Design of a 225 GHz high output power tripler based on unbalanced structure,” Progress in Electromagnetics Research, vol.56, pp.101–108, 2015.
    [100]
    J. Q. Deng, Q. J. Lu, Y. T. Yang, et al., “A 110–170 GHz spatial power-combined frequency tripler with 5.7%–7.8% efficiency and 0.5 W power handling,” Microwave and Optical Technology Letters, vol.60, no.5, pp.1079–1085, 2018. doi: 10.1002/mop.31109
    [101]
    A. Maestrini, J. S. Ward, J. J. Gill, et al., “A 540-640-GHz high-efficiency four-anode frequency tripler,” IEEE Transactions on Microwave Theory and Techniques, vol.53, no.9, pp.2835–2843, 2005. doi: 10.1109/TMTT.2005.854174
    [102]
    A. Maestrini, C. Tripon-Canseliet, J. S. Ward, et al., “A high efficiency multiple-anode 260-340 GHz frequency tripler,” Seventeenth International Symposium on Space Terahertz Technology, Paris, France, pp.166–169, 2006.
    [103]
    A. Maestrini, I. Mehdi, J. V. Siles, et al., “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Transactions on Terahertz Science and Technology, vol.2, no.2, pp.177–185, 2012. doi: 10.1109/TTHZ.2012.2183740
    [104]
    T. Kiuru, J. Mallat, A. V. Räisänen, et al., “Compact broadband MMIC Schottky frequency tripler for 75–140 GHz,” 2011 6th European Microwave Integrated Circuit Conference, Manchester, UK, pp.108–111, 2011.
    [105]
    T. Kiuru, K. Dahlberg, J. Mallat, et al., “Schottky frequency doubler for 140–220GHz using MMIC foundry process,” 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, Netherlands, pp.84–87, 2012.
    [106]
    V. Drakinskiy, P. Sobis, H. Zhao, et al., “Terahertz GaAs Schottky diode mixer and multiplier MIC's based on e-beam technology,” 2013 International Conference on Indium Phosphide and Related Materials (IPRM), Kobe, Japan, pp.1–2, 2013.
    [107]
    F. Yang, J. Treuttel, A. Maestrini, et al., “Solid state 448GHz frequency doubler using intergrated Schottky membrane technology,” 2013 Asia-Pacific Microwave Conf. (APMC), Seoul, Korea, pp.833–835, 2013.
    [108]
    J. V. Siles, E. Schlecht, R. Lin, et al., “High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation,” 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, pp.1–1, 2015.
    [109]
    T. H. Ren, Y. Zhang, B. Yan, et al., “A 330–500 GHz zero-biased broadband tripler based on Terahertz monolithic integrated circuits,” Chinese Physics Letters, vol.32, no.2, pp.2833–2840, 2015.
    [110]
    H. Xin, X. Cheng, J. Deng , et al., “Design of a novel 0.325 THz–0.5 THz tripler based on a customized TMIC,” 2016 IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Qingdao, China, pp.86–88, 2016.
    [111]
    J. Ding, A. Maestrini, L. Gatilova, et al., “High efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes,” Journal of Infrared, Millimeter, and Terahertz Waves, vol.38, no.11, pp.1331–1341, 2017. doi: 10.1007/s10762-017-0413-y
    [112]
    Dabao Y, Dong X, Shixiong L, et al., “Design and test of monolithically integrated 430 GHz frequency tripler,” Chinese Journal of Lasers, vol.46, no.6, pp.1–6, 2019.
    [113]
    M. Henry, B. Alderman, H. Sanghera, et al., “High-efficiency transferred substrate GaAs varactor multipliers for the terahertz spectrum,” in Proc. SPIE 7671, Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, Orlando, Florida, USA, article no.76710U, 2010.
    [114]
    O. Cojocari, I. Oprea, H. Gibson, et al., “SubMM-wave multipliers by film-diode technology,” 2016 46th European Microwave Conf. (EuMC), London, UK, pp.337–340, 2016.
    [115]
    J. Montero-de-Paz, M. Sobornytskyy, M. Hoefle, et al., “High power 150 GHz Schottky based varactor doubler,” 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, Finland, pp.1–4, 2016.
    [116]
    A. Maestrini, J. S. Ward, J. J. Gill, et al., “A frequency-multiplied source with more than 1 mW of power across the 840–900-GHz band,” IEEE Trans. on Microwave Theory and Tech., vol.58, no.7, pp.1925–1932, 2010. doi: 10.1109/TMTT.2010.2050171
    [117]
    N. Alijabbari, M. F. Bauwens, and R. M. Weiklee, “160 GHz balanced frequency quadruplers based on quasi-vertical Schottky varactors integrated on micromachined silicon,” IEEE Transactions on Terahertz Science and Technology, vol.4, no.6, pp.678–685, 2014. doi: 10.1109/TTHZ.2014.2360983
    [118]
    J. V. Siles, C. Lee, R. Lin, et al., “Capability of broadband solid-state room-temperature coherent sources in the terahertz range,” 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, pp.1–3, 2014.
    [119]
    T. W. Crowe, J. L. Hesler, S. A. Retzloff, et al., “Higher power terahertz sources based on diode multipliers,” 2017 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, pp.1–1, 2017.
    [120]
    C.Vie Ga S, H. Liu, J. Powell, et al., “A 180-GHz Schottky diode frequency doubler with counter-rotated E-fields to provide in-phase power-combining,” IEEE Access, vol.28, no.6, pp.518–520, 2018.
    [121]
    J. Ding, A. Maestrini, L. Gatilova, et al., “A 300 GHz power-combined frequency doubler based on E-plane 90-hybrid and Y-junction,” Microwave and Optical Technology Letters, vol.62, no.8, pp.2683–2691, 2020. doi: 10.1002/mop.32146
    [122]
    J. Q. Ding, A. Maestrini, L. Gatilova, et al., “High Efficiency and Powerful 260 – 340 GHz Frequency Doublers based on Schottky Diodes,” 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, pp.1–4, 2020.
    [123]
    W. C. Johnson and J. B. Parsons, “The preparation of Gallium Tribromide and Gallium Triiodide,” The Journal of Physical Chemistry, vol.34, no.6, pp.1210–1214, 1930. doi: 10.1021/j150312a007
    [124]
    W. C. Johnson and J. B. Parsons, “Nitrogen compounds of gallium. I, II,” The Journal of Physical Chemistry, vol.36, no.10, pp.2588–2594, 1932. doi: 10.1021/j150340a006
    [125]
    A. Hiroshi, K. Masahiro, H. Kazumasa, et al., “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, vol.28, no.12A, article no.L2112, 1989.
    [126]
    S. J. Pearton, F. Ren, A. P. Zhang, et al., “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering: R: Reports, vol.30, no.3, pp.55–212, 2000.
    [127]
    A. Margomenos, A. Kurdoghlian, M. Micovic, et al., “GaN technology for E, W and G-band applications,” 2014 IEEE compound semiconductor integrated circuit symposium (CSICS), La Jolla, CA, USA, pp.1–4, 2014.
    [128]
    J. M. Schellenberg, “A 2-W W-band GaN traveling-wave amplifier with 25-GHz bandwidth,” IEEE Transactions on Microwave Theory and Techniques, vol.63, no.9, pp.2833–2840, 2015. doi: 10.1109/TMTT.2015.2453156
    [129]
    S. J. Pearton, J. C. Zolper, R. J. Shul, et al., “GaN: Processing, defects, and devices,” Journal of applied physics, vol.86, no.1, pp.1–78, 1999. doi: 10.1063/1.371145
    [130]
    B. Zhang, D. Ji, D. Fang, et al., “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol.40, no.5, pp.780–783, 2019. doi: 10.1109/LED.2019.2903430
    [131]
    S. Liang, S. Cai, Z. Feng, et al., “A 177-183 GHz high-power GaN-based frequency doubler with over 200mW output power,” IEEE Electron Device Lett, vol.41, no.5, pp.669–672, 2020. doi: 10.1109/LED.2020.2981939
    [132]
    S. Ver Hoeye, A. Hadarig, C. Vázquez, et al., “Submillimeter wave high order frequency multiplier based on graphene,” IEEE Access, vol.7, pp.26933–26940, 2019. doi: 10.1109/ACCESS.2019.2901577
    [133]
    R. Dahlbck, V. Drakinskiy, J. Vu Kusic, et al., “A compact 128-element Schottky diode grid frequency doubler generating 0.25 W of output power at 183 GHz,” IEEE Microwave and Wireless Components Letters, vol.27, no.2, pp.162–164, 2017. doi: 10.1109/LMWC.2017.2652857
    [134]
    V. Siles, José, A. Maestrini, B. Alderman, et al., “A single-waveguide in-phase power-combined frequency doubler at 190 GHz,” IEEE Microwave & Wireless Components Letters, vol.21, no.6, pp.332–334, 2011.
    [135]
    G. Chattopadhyay, E. Schlecht, J. S. Ward, et al., “An all-solid-state broad-band frequency multiplier chain at 1500 GHz,” IEEE Trans. on Microwave Theory and Techniques, vol.52, no.5, pp.1538–1547, 2004. doi: 10.1109/TMTT.2004.827042
    [136]
    I. Mehdi, W. S. Holland, J. V. Siles, et al., “Local oscillator sub-systems for array receivers in the 1-3 THz range,” in Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Amsterdam, Netherlands, article no.845212, 2012.
    [137]
    J. C. Pearson, B. J. Drouin, A. Maestrini, et al., “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Review of Scientific Instruments, vol.82, no.9, pp.1–9, 2011.
    [138]
    J. V. Siles, I. Mehdi, C. Lee, et al., “A multi-pixel room-temperature local oscillator subsystem for array receivers at 1.9 THz,” in Proc. SPIE 9147, Ground-based and Airborne Instrumentation for Astronomy V, Montréal, Quebec, Canada, article no.914777, 2014.
    [139]
    J. Treuttel, E. Schlecht, J. Siles, et al., “A 2 THz Schottky solid-state heterodyne receiver for atmospheric studies,” in Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, UK, article no.99141O, 2016.
    [140]
    D. Moro-Melgar, O. Cojocari, and I. Oprea, “High power high efficiency 270-320 GHz source based on discrete Schottky diodes,” 2018 48th European Microwave Conference, Madrid, Spain, pp.1357–1360, 2018.
    [141]
    E. Bryerton, S. Retzloff, and J. Hesler, “High-power submillimeter wave solid-state sources,” 2019 12th Global Symposium on Millimeter Waves, Sendai, Japan, pp.9–31, 2019.
    [142]
    D. Moro-Melgar, O. Cojocari, and I. Oprea, “High power high efficiency 270-320 GHz source based on discrete Schottky diodes,” 2018 15th European Radar Conference (EuRAD), IEEE, Madrid, Spain, pp.337–340, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (3006) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return