Citation: | PAN Yi, LIU Jin, TIAN Xu, et al. “Hippocampal Segmentation in Brain MRI Images Using Machine Learning Methods: A Survey”. Chinese Journal of Electronics, vol. 30 no. 5. doi: 10.1049/cje.2021.06.002 |
P. R. Lewis and C. Shute, "The cholinergic limbic system:Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest", Brain, Vol.90, No.3, pp.521-540, 1967.
|
A. Treves and E. T. Rolls, "Computational analysis of the role of the hippocampus in memory", Hippocampus, Vol.4, No.3, pp.374-391, 1994.
|
N. J. Fortin, K. L. Agster and H. B. Eichenbaum, "Critical role of the hippocampus in memory for sequences of events", Nature Neuroscience, Vol.5, No.5, pp.458-462, 2002.
|
R. D. Rubin, P. D. Watson, M. C. Duff, et al., "The role of the hippocampus in flexible cognition and social behavior", Frontiers in Human Neuroscience, Vol.8, Page 742, 2014.
|
J. Liu, M. Li, W. Lan, et al., "Classification of Alzheimer's disease using whole brain hierarchical network", IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol.15, No.2, pp.624-632, 2016.
|
J. Liu, D. Zeng, R. Guo, et al., "Mmhge:Detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning", Cluster Computing, pp.1-11, 2020.
|
M.-P. Hosseini, M.-R. Nazem-Zadeh, D. Pompili, et al., "Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients", Medical Physics, Vol.43, No.1, pp.538-553, 2016.
|
Y. Wang, J. Wang, F.-X. Wu, et al., "AIMAFE:Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning", Journal of Neuroscience Methods, Vol.343, Page 108840, 2020.
|
J. Liu, Y. Sheng, W. Lan, et al., "Improved ASD classification using dynamic functional connectivity and multi-task feature selection", Pattern Recognition Letters, Vol.138, pp.82-87, 2020.
|
Y. Kong, J. Gao, Y. Xu, et al., "Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier", Neurocomputing, Vol.324, pp.63-68, 2019.
|
M. C. McKinnon, K. Yucel, A. Nazarov, et al., "A metaanalysis examining clinical predictors of hippocampal volume in patients with major depressive disorder", Journal of Psychiatry & Neuroscience:JPN, Vol.34, No.1, Page 41, 2009.
|
X. Zhang, L. Wang, Y. Ding, et al., "Brain network analysis of schizophrenia based on the functional connectivity", Chinese Journal of Electronics, Vol.28, No.3, pp.535-541, 2019.
|
Y. Xiang, J. Wang, G. Tan, et al., "Schizophrenia identification using multi-view graph measures of functional brain networks", Frontiers in Bioengineering and Biotechnology, Vol.7, Page 479, 2020.
|
J. Liu, X. Wang, X. Zhang, et al., "MMM:Classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning", Multimedia Tools and Applications, Vol.77, No.22, pp.29651-29667, 2018.
|
N. Damodaran, "Automated segmentation of hippocampal volume:The next step in neuroradiologic diagnosis of mesial temporal sclerosis", American Journal of Neuroradiology, Vol.40, No.7, pp.E38-E38, 2019.
|
T. Toda, S. L. Parylak, S. B. Linker, et al., "The role of adult hippocampal neurogenesis in brain health and disease", Molecular Psychiatry, Vol.24, No.1, pp.67-87, 2019.
|
K. S. Anand and V. Dhikav, "Hippocampus in health and disease:An overview", Annals of Indian Academy of Neurology, Vol. 15, No. 4, Page 239, 2012.
|
I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19:Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks", Physical and Engineering Sciences in Medicine, Vol.43, No.2, pp.635-640, 2020.
|
R. Li, H. Chen, Y. Peng, et al., "Ultrasound computed tomography of knee joint", Chinese Journal of Electronics, Vol.29, No.4, pp.705-716, 2020.
|
J. Liu, Y. Pan, M. Li, et al., "Applications of deep learning to MRI images:A survey", Big Data Mining and Analytics, Vol.1, No.1, pp.1-18, 2018.
|
J. Liu, J. Wang, Z. Tang, et al., "Improving Alzheimer's disease classification by combining multiple measures", IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol.15, No.5, pp.1649-1659, 2017.
|
R. E. Hogan, K. E. Mark, I. Choudhuri, et al., "Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy", Journal of Digital Imaging, Vol.13, No.1, pp.217-218, 2000.
|
D. Shen, S. Moffat, S. M. Resnick, et al., "Measuring size and shape of the hippocampus in MR images using a deformable shape model", NeuroImage, Vol.15, No.2, pp.422-434, 2002.
|
S. Duchesne, J. Pruessner and D. Collins, "Appearancebased segmentation of medial temporal lobe structures", NeuroImage, Vol.17, No.2, pp.515-531, 2002.
|
B. Fischl, D. H. Salat, E. Busa, et al., "Whole brain segmentation:Automated labeling of neuroanatomical structures in the human brain", Neuron, Vol.33, No.3, pp.341-355, 2002.
|
A. R. Khan, N. Cherbuin, W. Wen, et al., "Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn):Validation on hippocampus segmentation", NeuroImage, Vol.56, No.1, pp.126-139, 2011.
|
M. Sdika, "Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote", Medical Image Analysis, Vol.14, No.2, pp.219-226, 2010.
|
Y. Hao, T. Jiang and Y. Fan, "Iterative multi-atlas based segmentation with multi-channel image registration and jackknife context model", in 20129th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, pp.900-903, 2012.
|
J. Doshi, G. Erus, Y. Ou, et al., "MUSE:Multi-atlas region segmentation utilizing ensembles of registration algorithms and parameters, and locally optimal atlas selection", NeuroImage, Vol.127, pp.186-195, 2016.
|
S. Alchatzidis, A. Sotiras, E. I. Zacharaki, et al., "A discrete MRF framework for integrated multi-atlas registration and segmentation", International Journal of Computer Vision, Vol.121, No.1, pp.169-181, 2017.
|
S. Pang, Z. Lu, W. Yang, et al., "Hippocampus segmentation through distance field fusion", International Workshop on Patch-based Techniques in Medical Imaging, Munich, Germany, pp.104-111, 2015.
|
H. Zhu, Z. Tang, H. Cheng, et al., "Multi-atlas label fusion with random local binary pattern features:Application to hippocampus segmentation", Scientific Reports, Vol.9, No.1, pp.1-14, 2019.
|
X.-W. Li, Q.-L. Li, S.-Y. Li, et al., "Local manifold learning for multiatlas segmentation:Application to hippocampal segmentation in healthy population and Alzheimer's disease", CNS Neuroscience & Therapeutics, Vol.21, No.10, pp.826-836, 2015.
|
S. Pang, J. Jiang, Z. Lu, et al., "Hippocampus segmentation based on local linear mapping", Scientific Reports, Vol.7, No.1, pp.1-11, 2017.
|
Z. Wu, Y. Guo, S. H. Park, et al., "Robust brain ROI segmentation by deformation regression and deformable shape model", Medical Image Analysis, Vol.43, pp.198-213, 2018.
|
Y. Shao, J. Kim, Y. Gao, et al., "Hippocampal segmentation from longitudinal infant brain MR images via classification-guided boundary regression", IEEE Access, Vol.7, pp.33728-33740, 2019.
|
G. D. L. Palafox, A. L. S. Ortíz, O. M. Melendez, et al., "Hippocampal segmentation using mean shift algorithm", 12th International Symposium on Medical Information Processing and Analysis, Tandil, Argentina, Page 101600D, 2016.
|
C. Banerjee, T. Mukherjee and E. Pasiliao, "Feature representations using the reflected rectified linear unit (RRELU) activation", Big Data Mining and Analytics, Vol.3, No.2, pp.102-120, 2020.
|
L. Schmarje, M. Santarossa, S.-M. Schröder, et al., "A survey on semi-, self- and unsupervised techniques in image classification", arXiv preprint, arXiv:2002.08721, 2020.
|
S. Ghosh, N. Das, I. Das, et al., "Understanding deep learning techniques for image segmentation", ACM Computing Surveys (CSUR), Vol.52, No.4, pp.1-35, 2019.
|
Y. Zhang, X. Lei, Z. Fang, et al., "Circrna-disease associations prediction based on metapath2vec++ and matrix factorization", Big Data Mining and Analytics, Vol.3, No.4, pp.280-291, 2020.
|
F. Zhong and Y. Liu, "Image-based 3D pose reconstruction of surgical needle for robot-assisted laparoscopic suturing", Chinese Journal of Electronics, Vol.27, No.3, pp.476-482, 2018.
|
B. Zou, Q. Liu, K. Yue, et al., "Saliency-based segmentation of optic disc in retinal images", Chinese Journal of Electronics, Vol.28, No.1, pp.71-75, 2019.
|
J. Cheng, J. Liu, H. Yue, et al., "Prediction of glioma grade using intratumoral and peritumoral radiomic features from multiparametric MRI images", IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI:10.1109/TCBB.2020.3033538, 2020.
|
L. Liu, J. Cheng, Q. Quan, et al., "A survey on U-shaped networks in medical image segmentations", Neurocomputing, Vol.409, pp.244-258, 2020.
|
M. Cabezas, A. Oliver, X. Lladó, et al., "A review of atlasbased segmentation for magnetic resonance brain images", Computer Methods and Programs in Biomedicine, Vol.104, No.3, pp.e158-e177, 2011.
|
V. Dill, A. R. Franco and M. S. Pinho, "Automated methods for hippocampus segmentation:The evolution and a review of the state of the art", Neuroinformatics, Vol.13, No.2, pp.133-150, 2015.
|
J. E. Iglesias and M. R. Sabuncu, "Multi-atlas segmentation of biomedical images:A survey", Medical Image Analysis, Vol.24, No.1, pp.205-219, 2015.
|
H.-H. Chang, A. H. Zhuang, D. J. Valentino, et al., "Performance measure characterization for evaluating neuroimage segmentation algorithms", NeuroImage, Vol.47, No.1, pp.122-135, 2009.
|
A. A. Taha and A. Hanbury, "Metrics for evaluating 3D medical image segmentation:Analysis, selection, and tool", BMC Medical Imaging, Vol.15, No.1, Page 29, 2015.
|
Y. Hao, T. Jiang and Y. Fan, "Shape-constrained multi-atlas based segmentation with multichannel registration", Medical Imaging 2012:Image Processing, San Diego, California, USA, Page 83143N, 2012.
|
J. Alvén, A. Norlén, O. Enqvist, et al., "Überatlas:Fast and robust registration for multi-atlas segmentation", Pattern Recognition Letters, Vol.80, pp.249-255, 2016.
|
K. K. Leung, J. Barnes, G. R. Ridgway, et al., "Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease", NeuroImage, Vol.51, No.4, pp.1345-1359, 2010.
|
J. M. Lötjönen, R. Wolz, J. R. Koikkalainen, et al., "Fast and robust multi-atlas segmentation of brain magnetic resonance images", NeuroImage, Vol.49, No.3, pp.2352-2365, 2010.
|
T. R. Langerak, U. A. van der Heide, A. N. Kotte, et al., "Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple)", IEEE Transactions on Medical Imaging, Vol.29, No.12, pp.2000-2008, 2010.
|
M. R. Sabuncu, B. T. Yeo, K. Van Leemput, et al., "A generative model for image segmentation based on label fusion", IEEE Transactions on Medical Imaging, Vol.29, No.10, pp.1714-1729, 2010.
|
A. J. Asman and B. A. Landman, "Robust statistical label fusion through consensus level, labeler accuracy, and truth estimation (collate)", IEEE Transactions on Medical Imaging, Vol.30, No.10, pp.1779-1794, 2011.
|
H. Wang, J. W. Suh, S. Das, et al., "Regressionbased label fusion for multi-atlas segmentation", IEEE, DOI:10.1109/CVPR.2011.5995382, 2011.
|
P. Coupé, J. V. Manjón, V. Fonov, et al., "Patchbased segmentation using expert priors:Application to hippocampus and ventricle segmentation", NeuroImage, Vol.54, No.2, pp.940-954, 2011.
|
F. Rousseau, P. A. Habas and C. Studholme, "A supervised patch-based approach for human brain labeling", IEEE Transactions on Medical Imaging, Vol.30, No.10, pp.1852-1862, 2011.
|
P. Coupé, S. F. Eskildsen, J. V. Manjón, et al., "Simultaneous segmentation and grading of anatomical structures for patient's classification:Application to Alzheimer's disease", NeuroImage, Vol.59, No.4, pp.3736-3747, 2012.
|
Y. Wang, X. Wu, G. Ma, et al., "Patch-based hippocampus segmentation using a local subspace learning method", International Workshop on Machine Learning in Medical Imaging, Athens, Greece, pp.86-94, 2016.
|
Y. Wang, G. Ma, X. Wu, et al., "Patch-based label fusion with structured discriminant embedding for hippocampus segmentation", Neuroinformatics, Vol.16, No.3-4, pp.411-423, 2018.
|
H. Zhu, H. Cheng, X. Yang, et al., "Metric learning for multiatlas based segmentation of hippocampus", Neuroinformatics, Vol.15, No.1, pp.41-50, 2017.
|
G. Wu, Q. Wang, D. Zhang, et al., "A generative probability model of joint label fusion for multi-atlas based brain segmentation", Medical Image Analysis, Vol.18, No.6, pp.881-890, 2014.
|
H. Wang, J. W. Suh, S. R. Das, et al., "Multi-atlas segmentation with joint label fusion", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.3, pp.611-623, 2012.
|
G. Wu, M. Kim, G. Sanroma, et al., "Hierarchical multi-atlas label fusion with multi-scale feature representation and labelspecific patch partition", NeuroImage, Vol.106, pp.34-46, 2015.
|
J. B. Tenenbaum, V. De Silva and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, Vol.290, No.5500, pp.2319-2323, 2000.
|
L. Wang, Y. Guo, X. Cao, et al., "Consistent multi-atlas hippocampus segmentation for longitudinal MR brain images with temporal sparse representation", International Workshop on Patch-based Techniques in Medical Imaging, Athens, Greece, pp.34-42, 2016.
|
R. Wolz, R. A. Heckemann, P. Aljabar, et al., "Measurement of hippocampal atrophy using 4D graph-cut segmentation:Application to ADNI", NeuroImage, Vol.52, No.1, pp.109-118, 2010.
|
Y. Guo, G. Wu, P.-T. Yap, et al., "Segmentation of infant hippocampus using common feature representations learned for multimodal longitudinal data", International Conference on Medical Image Computing and ComputerAssisted Intervention, Munich, Germany, pp.63-71, 2015.
|
Y. Guo, P. Dong, S. Hao, et al., "Automatic segmentation of hippocampus for longitudinal infant brain MR image sequence by spatial-temporal hypergraph learning", International Workshop on Patch-based Techniques in Medical Imaging, Athens, Greece, 2016, pp.1-8.
|
P. Dong, Y. Guo, D. Shen, et al., "Multi-atlas and multi-modal hippocampus segmentation for infant MR brain images by propagating anatomical labels on hypergraph", International Workshop on Patch-based Techniques in Medical Imaging, Munich, Germany, pp.188-196, 2015.
|
Q. Zheng and Y. Fan, "Integrating semi-supervised label propagation and random forests for multi-atlas based hippocampus segmentation", 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, USA, pp.154-157, 2018.
|
S. Tangaro, N. Amoroso, M. Boccardi, et al., "Automated voxel-by-voxel tissue classification for hippocampal segmentation:Methods and validation", Physica Medica, Vol.30, No.8, pp.878-887, 2014.
|
Y. Hao, T. Wang, X. Zhang, et al., "Local label learning (LLL) for subcortical structure segmentation:Application to hippocampus segmentation", Human Brain Mapping, Vol.35, No.6, pp.2674-2697, 2014.
|
A. van Opbroek, H. C. Achterberg, M. W. Vernooij, et al., "Transfer learning by feature-space transformation:A method for hippocampus segmentation across scanners", NeuroImage:Clinical, Vol.20, pp.466-475, 2018.
|
T. Tong, R. Wolz, P. Coupé, et al., "Segmentation of MR images via discriminative dictionary learning and sparse coding:Application to hippocampus labeling", NeuroImage, Vol.76, pp.11-23, 2013.
|
F. E. Athó, A. J. Traina, C. Traina, et al., "The similarity cloud model:A novel and efficient hippocampus segmentation technique", 201124th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, pp.1-6, 2011.
|
P. A. Miranda, A. X. Falcão and J. K. Udupa, "Cloud bank:A multiple clouds model and its use in MR brain image segmentation", 2009 IEEE International Symposium on Biomedical Imaging:From Nano to Macro, Boston, Massachusetts, USA, pp.506-509, 2009.
|
H. Wang, S. R. Das, J. W. Suh, et al., "A learning-based wrapper method to correct systematic errors in automatic image segmentation:Consistently improved performance in hippocampus, cortex and brain segmentation", NeuroImage, Vol.55, No.3, pp.968-985, 2011.
|
A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, pp.1097-1105, 2012.
|
J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp.3431-3440, 2015.
|
Z. Xie and D. Gillies, "Near real-time hippocampus segmentation using patch-based canonical neural network", arXiv preprint, arXiv:1807.05482, 2018.
|
D. Ataloglou, A. Dimou, D. Zarpalas, et al., "Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning", Neuroinformatics, Vol.17, No.4, pp.563-582, 2019.
|
S. Pang, Z. Lu, J. Jiang, et al., "Hippocampus segmentation based on iterative local linear mapping with representative and local structure-preserved feature embedding", IEEE Transactions on Medical Imaging, Vol.38, No.10, pp.2271-2280, 2019.
|
Y. Liu and Z. Yan, "A combined deep-learning and lattice boltzmann model for segmentation of the hippocampus in MRI", Sensors, Vol.20, No.13, Page 3628, 2020.
|
Y. Guo, G. Wu, L. A. Commander, et al., "Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features", International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA, pp.308-315, 2014.
|
N. Amoroso, R. Errico, S. Bruno, et al., "Hippocampal unified multi-atlas network (human):Protocol and scale validation of a novel segmentation tool", Physics in Medicine & Biology, Vol.60, No.22, Page 8851, 2015.
|
B. Thyreau, K. Sato, H. Fukuda, et al., "Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing", Medical Image Analysis, Vol.43, pp.214-228, 2018.
|
D. Chen, W. Liu, Y. Huang, et al., "Enhancement mask for hippocampus detection and segmentation", 2018 IEEE International Conference on Information and Automation (ICIA), Wuyi Mountain, Fujian, China, pp.455-460, 2018.
|
N. K. Dinsdale, M. Jenkinson and A. I. Namburete, "Spatial warping network for 3D segmentation of the hippocampus in MR images", in International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, pp.284-291, 2019.
|
C. Wachinger, M. Reuter and T. Klein, "Deepnat:Deep convolutional neural network for segmenting neuroanatomy", NeuroImage, Vol.170, pp.434-445, 2018.
|
O. Ronneberger, P. Fischer and T. Brox, "U-net:Convolutional networks for biomedical image segmentation", International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, pp.234-241, 2015.
|
Y. Chen, B. Shi, Z. Wang, et al., "Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble", International Workshop on Machine Learning in Medical Imaging, Quebec City, QC, Canada, pp.88-96, 2017.
|
Y. Chen, B. Shi, Z. Wang, et al., "Hippocampus segmentation through multi-view ensemble convnets", 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, pp.192-196, 2017.
|
I. Brusini, O. Lindberg, J.-S. Muehlboeck, et al., "Shape information improves the cross-cohort performance of deep learning-based segmentation of the hippocampus", Frontiers in Neuroscience, DOI:10.3389/fnins.2020.00015, 2020.
|
C. Jia, D. Liu, F. Kong, et al., "Three-dimensional segmentation of hippocampus in brain MRI images based on 3CN-net", Proceedings of the 20193rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, pp.17-20, 2019.
|
H. Zhu, F. Shi, L. Wang, et al., "Dilated dense U-net for infant hippocampus subfield segmentation", Frontiers in Neuroinformatics, Vol.13, Page 30, 2019.
|
W. Yao, S. Wang and H. Fu, "Hippocampus segmentation in MRI using side U-net model", International Conference on Neural Information Processing, Sydney, NSW, Australia, pp.143-150, 2019.
|
M. Goubran, E. E. Ntiri, H. Akhavein, et al., "Hippocampal segmentation for brains with extensive atrophy using threedimensional convolutional neural networks", Human Brain Mapping, Vol.41, No.2, pp.291-308, 2020.
|
B. Hou, G. Kang, N. Zhang, et al., "Multi-target interactive neural network for automated segmentation of the hippocampus in magnetic resonance imaging", Cognitive Computation, Vol.11, No.5, pp.630-643, 2019.
|
L. Cao, L. Li, J. Zheng, et al., "Multi-task neural networks for joint hippocampus segmentation and clinical score regression", Multimedia Tools and Applications, Vol.77, No.22, pp.29669-29686, 2018.
|
M. Liu, F. Li, H. Yan, et al., "A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease", NeuroImage, Vol.208, Page 116459, 2020.
|
M. Boccardi, M. Bocchetta, F. C. Morency, et al., "Training labels for hippocampal segmentation based on the EADCADNI harmonized hippocampal protocol", Alzheimer's & Dementia, Vol.11, No.2, pp.175-183, 2015.
|
Y. Liu, C. Wang and Y. Wei, "Hippocampus segmentation in MR image based on atlas registration and broad learning", 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, pp.2707-2711, 2019
|
K. Jafari-Khouzani, K. V. Elisevich, S. Patel, et al., "Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques", Neuroinformatics, Vol.9, No.4, pp.335-346, 2011.
|
K. Sato, Y. Taki, H. Fukuda, et al., "Neuroanatomical database of normal Japanese brains", Neural Networks, Vol.16, No.9, pp.1301-1310, 2003.
|
L. Xie, L. E. Wisse, S. R. Das, et al., "Accounting for the confound of meninges in segmenting entorhinal and perirhinal cortices in T1-weighted MRI", International Conference on Medical Image Computing and Computerassisted Intervention, Athens, Greece, pp.564-571, 2016.
|
A. Zandifar, V. S. Fonov, J. C. Pruessner, et al., "The EADCADNI harmonized protocol for hippocampal segmentation:A validation study", NeuroImage, Vol.181, pp.142-148, 2018.
|
A. G. Roy, S. Conjeti, N. Navab, et al., "Quicknat:A fully convolutional network for quick and accurate segmentation of neuroanatomy", NeuroImage, Vol.186, pp.713-727, 2019.
|
A. Kaku, C. V. Hegde, J. Huang, et al., "Darts:Denseunetbased automatic rapid tool for brain segmentation", arXiv preprint, arXiv:1911.05567, 2019.
|
D. Carmo, B. Silva, C. Yasuda, et al., "Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks", arXiv preprint, arXiv:2001.05058, 2020.
|
Y. Li, H. Li and Y. Fan, "Acenet:Anatomical contextencoding network for neuroanatomy segmentation", arXiv preprint, arXiv:2002.05773, 2020.
|
Y. Huo, Z. Xu, Y. Xiong, et al., "3D whole brain segmentation using spatially localized atlas network tiles", NeuroImage, Vol.194, pp.105-119, 2019.
|
J. V. Manjón and P. Coupé, "volBrain:An online MRI brain volumetry system", Frontiers in Neuroinformatics, Vol.10, Page 30, 2016.
|
P. N. Hadar, L. G. Kini, C. Coto, et al., "Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy", NeuroImage:Clinical, Vol.20, pp.1139-1147, 2018.
|
M. M. Chakravarty, P. Steadman, M. C. van Eede, et al., "Performing label-fusion-based segmentation using multiple automatically generated templates", Human Brain Mapping, Vol.34, No.10, pp.2635-2654, 2013.
|
J. Pipitone, M. T. M. Park, J. Winterburn, et al., "Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates", NeuroImage, Vol.101, pp.494-512, 2014.
|
W. Lan, D. Lai, Q. Chen, et al., "LDICDL:Lncrna-disease association identification based on collaborative deep learning", IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI:10.1109/TCBB.2020.3034910, 2020.
|
M. Lu and F. Li, "Survey on lie group machine learning", Big Data Mining and Analytics, Vol.3, No.4, pp.235-258, 2020.
|
J. Liu, Y. Pan, F.-X. Wu, et al., "Enhancing the feature representation of multi-modal MRI data by combining multiview information for MCI classification", Neurocomputing, Vol.400, pp.322-332, 2020.
|
X. Zhang, S. Lu, S.-H. Wang, et al., "Diagnosis of COVID-19 pneumonia via a novel deep learning architecture", Journal of Computer Science and Technology, DOI:10.1007/s11390-020-0679-8, 2021.
|
D. Meng and L. Sun, "Some new trends of deep learning research", Chinese Journal of Electronics, Vol.28, No.6, pp.1087-1090, 2019.
|