Citation: | SHI Jianyang, CAI Jifan, QIN Guojin, et al., “Geometrically Shaped 32QAM and Modified Binary Switching Coding Method in Underwater Visible Light Communication,” Chinese Journal of Electronics, vol. 31, no. 6, pp. 1106-1111, 2022, doi: 10.1049/cje.2022.00.057 |
[1] |
X. You, C. X. Wang, J. Huang, et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Science China Information Sciences, vol.64, no.1, pp.1–74, 2021.
|
[2] |
M. Latva-aho, K. Leppänen, F. Clazzer, et al., “Key drivers and research challenges for 6G ubiquitous wireless intelligence,” Available at: https://elib.dlr.de/133477/, 2020.
|
[3] |
B. Zong, C. Fan, X. Wang, et al., “6G technologies: Key drivers, core requirements, system architectures, and enabling technologies,” IEEE Vehicular Technology Magazine, vol.14, no.3, pp.18–27, 2019. doi: 10.1109/MVT.2019.2921398
|
[4] |
N. Chi, H. Haas, M. Kavehrad, et al., “Visible light communications: Demand factors, benefits and opportunities,” IEEE Wireless Communications, vol.22, no.2, pp.5–7, 2015. doi: 10.1109/MWC.2015.7096278
|
[5] |
A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE communications magazine, vol.51, no.12, pp.26–32, 2013. doi: 10.1109/MCOM.2013.6685754
|
[6] |
N. Chi, Y. Zhou, Y. Wei, et al., “Visible light communication in 6G: Advances, challenges, and prospects,” IEEE Vehicular Technology Magazine, vol.15, no.4, pp.93–102, 2020. doi: 10.1109/MVT.2020.3017153
|
[7] |
N. Chi and F. Hu, “Nonlinear adaptive filters for high-speed LED based underwater visible light communication,” Chinese Optics Letters, vol.17, no.10, article no.100011, 2019. doi: 10.3788/COL201917.100011
|
[8] |
J. Wang, C. Lu, S. Li, et al., “100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode,” Optics Express, vol.27, no.9, pp.12171–12181, 2019. doi: 10.1364/OE.27.012171
|
[9] |
J. P. M. G. Linnartz, X. Deng, A. Alexeev, et al., “Wireless communication over an LED channel,” IEEE Communications Magazine, vol.58, no.12, pp.77–82, 2020. doi: 10.1109/MCOM.001.2000138
|
[10] |
G. Cossu, A. Khalid, P. Choudhury, et al., “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Optics Express, vol.20, no.26, pp.B501–B506, 2012. doi: 10.1364/OE.20.00B501
|
[11] |
Z. Qu and I. B. Djordjevic, “Geometrically shaped 16QAM outperforming probabilistically shaped 16QAM,” in Proceedings of 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, pp.1–3, 2017.
|
[12] |
B. F. Beidas, R. I. Seshadri, M. Eroz, et al., “Faster-than-Nyquist signaling and optimized signal constellation for high spectral efficiency communications in nonlinear satellite systems,” in Proceedings of 2014 IEEE Military Communications Conference, Baltimore, MD, USA, pp.818–823, 2014.
|
[13] |
H. Méric, “Approaching the Gaussian channel capacity with APSK constellations,” IEEE Communications Letters, vol.19, no.7, pp.1125–1128, 2015. doi: 10.1109/LCOMM.2015.2431674
|
[14] |
N. S. Loghin, J. Zöllner, B. Mouhouche, et al., “Non-uniform constellations for ATSC 3.0,” IEEE Transactions on Broadcasting, vol.62, no.1, pp.197–203, 2016. doi: 10.1109/TBC.2016.2518620
|
[15] |
J. Zhao, C. Qin, M. Zhang, et al., “Investigation on performance of special-shaped 8-quadrature amplitude modulation constellations applied in visible light communication,” Photonics Research, vol.4, no.6, pp.249–256, 2016. doi: 10.1364/PRJ.4.000249
|
[16] |
P. Zou, Y. Liu, F. Wang, et al., “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in Proceedings of 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, pp.1–3, 2018.
|
[17] |
T. Pfau, X. Liu, and S. Chandrasekhar, “Optimization of 16-ary quadrature amplitude modulation constellations for phase noise impaired channels,” in Proceedings of 2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, pp.1–3, 2011.
|
[18] |
P. Zou, Y. Liu, F. Wang, et al., “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Optics Communications, vol.438, pp.132–140, 2019. doi: 10.1016/j.optcom.2018.12.051
|
[19] |
ETSI EN 302 307-2:2020, Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadbandsatellite Applications, Available at: https://dvb.org/?standard=second-generation-framing-structure-channel-coding-and-modulation-systems-for-broadcasting-interactive-services-news-gathering-and-other-broadband-satellite-applications-part-2-dvb-s2-extensions.
|
[20] |
W. Niu, H. Chen, J. Zhang, et al., “Nonlinearity mitigation based on modulus pruned look-up table for multi-bit delta-sigma 32-CAP modulation in underwater visible light communication system,” IEEE Photonics Journal, vol.13, no.1, pp.1–12, 2021.
|
[21] |
K. Yan, F. Yang, J. Song, et al., “A framework of APSK constellation labeling design for satellite transmission,” in Proceedings of 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, pp.4337–4341, 2014.
|
[22] |
Y. Li and X. G. Xia, “Constellation mapping for space-time matrix modulation with iterative demodulation/decoding,” IEEE Transactions on Communications, vol.53, no.5, pp.764–768, 2005. doi: 10.1109/TCOMM.2005.847163
|
[23] |
S. Cammerer, F. A. Aoudia, S. Dörner, et al., “Trainable communication systems: Concepts and prototype,” IEEE Transactions on Communications, vol.68, no.9, pp.5489–5503, 2020. doi: 10.1109/TCOMM.2020.3002915
|