Citation: | WU Yezeng, XIAO Lixia, LIU Guanghua, et al., “Hybrid Beamforming for Terahertz Wireless Communications with Beam Squint: A Survey,” Chinese Journal of Electronics, vol. 31, no. 6, pp. 1043-1052, 2022, doi: 10.1049/cje.2022.00.309 |
[1] |
J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, et al., “A survey on 5G usage scenarios and traffic models,” IEEE Communications Surveys Tutorials, vol.22, no.2, pp.905–929, 2020. doi: 10.1109/COMST.2020.2971781
|
[2] |
J. G. Andrews, S. Buzzi, W. Choi, et al., “What will 5G be?,” IEEE Journal on Selected Areas in Communications, vol.32, no.6, pp.1065–1082, 2014. doi: 10.1109/JSAC.2014.2328098
|
[3] |
Z. Zhang, Y. Xiao, Z. Ma, et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Transactions on Vehicular Technology, vol.14, no.3, pp.28–41, 2019. doi: 10.1109/MVT.2019.2921208
|
[4] |
B. Ning, Z. Tian, Z. Chen, et al., “Prospective beamforming technologies for ultra-massive MIMO in terahertz communications: A tutorial,” arXiv Preprint, arXiv: 2107.03032, 2021.
|
[5] |
T. S. Rappaport, Y. C. Xing, O. Kanhere, et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol.7, pp.78729–78757, 2019. doi: 10.1109/ACCESS.2019.2921522
|
[6] |
P. Yang, Y. Xiao, M. Xiao, et al., “6G wireless communications: vision and potential techniques,” IEEE Network, vol.33, no.4, pp.70–75, 2019. doi: 10.1109/MNET.2019.1800418
|
[7] |
C. D. Alwis, A. Kalla, Q. -V. Pham, et al., “Survey on 6G frontiers: Trends, applications, requirements, technologies and future research,” IEEE Open Journal of the Communications Society, vol.2, pp.836–886, 2021. doi: 10.1109/OJCOMS.2021.3071496
|
[8] |
Z. Chen, X, Y. Ma, B. Zhang, et al., “A survey on terahertz communications,” China Communications, vol.16, no.2, pp.1–35, 2019. doi: 10.12676/j.cc.2019.02.001
|
[9] |
L. Yan, C. Han, and J. Yuan, “Hybrid precoding for 6G terahertz communications: Performance evaluation and open problems,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, DOI: 10.1109/6GSUMMIT49458.2020.9083795, 2020.
|
[10] |
H. Sarieddeen, M. -S. Alouini, and T. Y. Al-Naffouri, “An overview of signal processing techniques for terahertz communications,” Proceedings of the IEEE, vol.109, no.10, pp.1628–1665, 2021. doi: 10.1109/JPROC.2021.3100811
|
[11] |
T. Nagatsuma, G. Ducournau, and C. Renaud., “Advances in terahertz communications accelerated by photonics,” Nature Photonics, vol.10, no.6, pp.371–379, 2016. doi: 10.1038/nphoton.2016.65
|
[12] |
C. Han, J. M. Jornet, and I. Akyildiz, “Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications,” 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, DOI: 10.1109/VTCSpring.2018.8417893, 2018.
|
[13] |
J. Tan and L. Dai, “THz precoding for 6G: Challenges, solutions, and opportunities,” IEEE Wireless Communications, early access, DOI: 10.1109/MWC.015.2100674, 2022.
|
[14] |
C. Han, L. Yan, and J. Yuan, “Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems,” IEEE Wireless Communications, vol.28, no.4, pp.198–204, 2021. doi: 10.1109/MWC.001.2000458
|
[15] |
S.-H. Park, B. Kim, D. K. Kim, et al., “Beam squint in ultra-wideband mmWave systems: RF lens array vs. phase-shifter-based array,” IEEE Wireless Communication, early access, DOI: 10.1109/MWC.007.2100530, 2022.
|
[16] |
Y. Chen, Y. Xiong, D. Chen, et al., “Hybrid precoding for wideBand millimeter wave MIMO systems in the face of beam squint,” IEEE Transactions on Wireless Communications, vol.20, no.3, pp.1847–1860, 2021. doi: 10.1109/TWC.2020.3036945
|
[17] |
Y. Chen, D. Chen, T. Jiang, et al., “Channel-covariance and angle-of-departure aided hybrid precoding for wideband multiuser millimeter wave MIMO systems,” IEEE Transactions on Communications, vol.67, no.12, pp.8315–8328, 2019. doi: 10.1109/TCOMM.2019.2942307
|
[18] |
B. Wang, M. Jian, F. Gao, et al., “Beam squint and channel estimation for wideband mmWave massive MIMO-OFDM systems,” IEEE Transactions on Signal Processing, vol.67, no.23, pp.5893–5908, 2019. doi: 10.1109/TSP.2019.2949502
|
[19] |
B. L. Wang, F. F. Gao, S. Jin, et al., “Spatial-wideband effect in massive MIMO with application in mmWave systems,” IEEE Communications Magazine, vol.56, no.12, pp.134–141, 2018. doi: 10.1109/MCOM.2018.1701051
|
[20] |
B. L. Wang, F. F. Gao, S. Jin, et al., “Spatial- and frequency-wideband effects in millimeter-wave massive MIMO systems,” IEEE Transactions on Signal Processing, vol.66, no.13, pp.3393–3406, 2018. doi: 10.1109/TSP.2018.2831628
|
[21] |
Q. Wan, J. Fang, Z. Chen, et al., “Hybrid precoding and combining for millimeter wave/sub-THz MIMO-OFDM systems with beam squint effects,” IEEE Transactions on Vehicular Technology, vol.70, no.8, pp.8314–8319, 2021. doi: 10.1109/TVT.2021.3093095
|
[22] |
K. Dovelos, M. Matthaiou, H. Q. Ngo, et al., “Channel estimation and hybrid combining for wideband terahertz massive MIMO systems,” IEEE Journal on Selected Areas in Communications, vol.39, no.6, pp.1604–1620, 2021. doi: 10.1109/JSAC.2021.3071851
|
[23] |
B. Wang, F. Gao, C. Xing, et al., “Wideband beamforming for hybrid phased Array terahertz systems,” IEEE International Conference on Communications, Montreal, QC, Canada, DOI: 10.1109/ICC42927.2021.9500455, 2021.
|
[24] |
L. Dai, J. Tan, Z. Chen, et al., “Delay-phase precoding for wideband THz massive MIMO,” IEEE Transactions on Wireless Communications, vol.21, no.9, pp.7271–7286, 2022. doi: 10.1109/TWC.2022.3157315
|
[25] |
R. Rotman, M. Tur, and L. Yaron, “True time delay in phased arrays,” Proceedings IEEE, vol.104, no.3, pp.504–518, 2016. doi: 10.1109/JPROC.2016.2515122
|
[26] |
V. Boljanovic, H. Yan, C. -C. Lin, et al., “Fast beam training with true-time-delay arrays in wideband millimeter-wave systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.68, no.4, pp.1727–1739, 2021. doi: 10.1109/TCSI.2021.3054428
|
[27] |
H. Hashemi, T. -S. Chu. and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Communication Magazine, vol.46, no.9, pp.162–172, 2008. doi: 10.1109/MCOM.2008.4623722
|
[28] |
E. Ghaderi, A. Sivadhasan Ramani, A. A. Rahimi, et al., “An integrated discrete-time delay-compensating technique for large-array beamformers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.66, no.9, pp.3296–3306, 2019. doi: 10.1109/TCSI.2019.2926309
|
[29] |
L. Yan, C. Han, and J. Yuan, “A dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications,” IEEE Journal on Selected Areas in Communications, vol.38, no.9, pp.2041–2056, 2020. doi: 10.1109/JSAC.2020.3000876
|
[30] |
H. Yuan, N. Yang, K. Yang, et al., “Hybrid beamforming for terahertz multi-carrier systems over frequency selective fading,” IEEE Transactions on Communications, vol.68, no.10, pp.6186–6199, 2020. doi: 10.1109/TCOMM.2020.3008699
|
[31] |
R. Zhang, W. Hao, G. Sun, et al., “Hybrid precoding design for wideband THz massive MIMO-OFDM systems with beam squint,” IEEE Systems Journal, vol.15, no.3, pp.3925–3928, 2021. doi: 10.1109/JSYST.2020.3003908
|
[32] |
F. Gao, B. Wang, C. Xing, et al., “Wideband beamforming for hybrid massive MIMO terahertz communications,” IEEE Journal on Selected Areas in Communications, vol.39, no.6, pp.1725–1740, 2021. doi: 10.1109/JSAC.2021.3071822
|
[33] |
D. Q. Nguyen and T. Kim, “Joint delay and phase precoding under true-time delay constraints for THz massive MIMO,” in Proceedings of IEEE International Conference on Communications (ICC 2022), Seoul, Korea, pp.3496–3501, 2022.
|
[34] |
E. Carrasco, J. A. Encinar, and M. Barba, “Bandwidth improvement in large reflectarrays by using true-time delay,” IEEE Transactions on Antennas Propagation, vol.56, no.8, pp.2496–2503, 2008. doi: 10.1109/TAP.2008.927559
|
[35] |
K. Sreenivasulu, A. Kedar, D. S. Rao, et al., “Design and development of wide band true time delay (TTD) based transmit/receive module,” in Proceedings of 2020 IEEE Conference on Microwave Theory and Techniques in Wireless Communications, Riga, Latvia, pp.124–129, 2020.
|
[36] |
Y. Wu, G. Song, H. Liu, et al., “3D hybrid beamforming for terahertz broadband communication system with beam squint,” IEEE Transactions on Broadcasting, early access, DOI: 10.1109/TBC.2022.3205214, 2022.
|
[37] |
I. F. Akyildiz and J. M. Jornet, “Realizing ultra-massive MIMO (1024x1024) communication in the (0.06-10) terahertz band,” Nano Communication Networks, vol.8, pp.46–54, 2016. doi: 10.1016/j.nancom.2016.02.001
|
[38] |
A. Liao, Z. Gao, D. Wang, et al., “Terahertz ultra-massive MIMO-based aeronautical communications in space-air-ground integrated networks,” IEEE Journal on Selected Areas in Communications, vol.39, no.6, pp.1741–1767, 2021. doi: 10.1109/JSAC.2021.3071834
|
[39] |
L. Yan, C. Han, T. Yang, et al., “Dynamic-subarray with fixed-true-time-delay architecture for terahertz wideband hybrid beamforming,” in Proceedings of 2021 IEEE Global Communications Conference, Madrid, Spain, pp.1–6, 2021.
|
[40] |
A. Kaushik, E. Vlachos, C. Tsinos, et al., “Joint bit allocation and hybrid beamforming optimization for energy efficient millimeter wave MIMO systems,” IEEE Transactions on Green Communications and Networking, vol.5, no.1, pp.119–132, 2021. doi: 10.1109/TGCN.2020.3026725
|
[41] |
X. Qiao, Y. Zhang, M. Zhou, et al., “Eigen decomposition-based hybrid precoding for millimeter wave MIMO systems with low-resolution ADCs/DACs,” 2019 11th International Conference on Wireless Communications and Signal Processing, Xi’an, China, DOI: 10.1109/WCSP.2019.8928140, 2019.
|
[42] |
Y. Zhang, D. Li, D. Qiao, et al., “Analysis of indoor THz communication systems with finite-bit DACs and ADCs,” IEEE Transactions on Vehicular Technology, vol.71, no.1, pp.375–390, 2022. doi: 10.1109/TVT.2021.3123380
|
[43] |
L. Yan, C. Han, N. Yang, et al., “Dynamic-subarray with fixed phase shifters for energy-efficient terahertz hybrid beamforming under partial CSI,” IEEE Transactions on Wireless Communications, early access, DOI: 10.1109/TWC.2022.3217018, 2022.
|
[44] |
B. Ning, Z. Chen, W. Chen, et al., “Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming,” IEEE Transactions on Vehicular Technology, vol.70, no.2, pp.1376–1393, 2021. doi: 10.1109/TVT.2021.3052074
|
[45] |
A. M. Elbir, K. V. Mishra, and S. Chatzinotas, “Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming,” IEEE Journal of Selected Topics in Signal Processing, vol.15, no.6, pp.1468–1483, 2021. doi: 10.1109/JSTSP.2021.3117410
|
[46] |
N. Varshney and S. De, “RF beamforming and subcarrier allocation using beam squint in mmWave systems,” IEEE Wireless Communications Letters, vol.11, no.4, pp.678–682, 2022. doi: 10.1109/LWC.2021.3137482
|
[47] |
J. Tan and L. Dai, “Wideband beam tracking in THz massive MIMO systems,” IEEE Journal on Selected Areas in Communications, vol.39, no.6, pp.1693–1710, 2021. doi: 10.1109/JSAC.2021.3071817
|