Citation: | LI Yumei, ZHANG Futai. Remote Data Auditing for Cloud-Assisted WBANs with Pay-as-You-Go Business Model[J]. Chinese Journal of Electronics, 2023, 32(2): 248-261. doi: 10.23919/cje.2020.00.314 |
[1] |
B. Latré, B. Braem, I. Moerman, et al., “A survey on wireless body area networks,” Wireless Networks, vol.17, no.1, pp.1–18, 2011.
|
[2] |
J. F. Wan, C. F. Zou, S. Ullah, et al., “Cloud-enabled wireless body area networks for pervasive healthcare,” IEEE Network, vol.27, no.5, pp.56–61, 2013. doi: 10.1109/MNET.2013.6616116
|
[3] |
S. Ullah, A. V. Vasilakos, H. Chao, et al., “Cloud-assisted wireless body area networks,” Information Sciences,, vol.284, pp.81–83, 2014.
|
[4] |
Y. Deswarte, J. J. Quisquater, and A. Saïdane, “Remote integrity checking,” in Proceedings of the Sixth Working Conference on Integrity and Internal Control in Information Systems, Lausanne, Switzerland, pp.1–11, 2004.
|
[5] |
G. Ateniese, R. Burns, R. Curtmola, et al., “Provable data possession at untrusted stores,” in Proceedings of ACM Conference on Computer and Communications Security, Alexandria, Virginia, USA, pp.598–09, 2007.
|
[6] |
Y. M. Li and F. T. Zhang, “An efficient certificate-based data integrity auditing protocol for cloud-assisted WBANs,” IEEE Internet of Things Journal, vol.9, no.13, pp.11513–11523, 2022. doi: 10.1109/JIOT.2021.3130291
|
[7] |
C. Wang, S. S. M. Chow, Q. Wang, et al., “Privacy-preserving public auditing for secure cloud storage,” IEEE Transactions on Computers, vol.62, no.2, pp.362–375, 2013. doi: 10.1109/TC.2011.245
|
[8] |
B. Wang, B. Li, H. Li, et al., “Certificateless public auditing for data integrity in the cloud,” in Proceedings of IEEE Conference on Communications and Network Security, National Harbor, MD, USA, pp.136–144, 2013.
|
[9] |
F. Armknecht, J. M. Bohli, G. O. Karame, et al., “Outsourced proofs of retrievability,” in Proceedings of ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, Arizona, USA, pp.831–843, 2014.
|
[10] |
S. K. Nayak and S. Tripathy, “SEPDP: Secure and efficient privacy preserving provable data possession in cloud storage,” IEEE Transactions on Services Computing, vol.14, no.3, pp.876–888, 2021. doi: 10.1109/TSC.2018.2820713
|
[11] |
Y. N. Li, Y. Yu, G. Min, et al., “Fuzzy identity-based data integrity auditing for reliable cloud storage systems,” IEEE Transactions on Dependable and Secure Computing, vol.16, no.1, pp.72–83, 2019. doi: 10.1109/TDSC.2017.2662216
|
[12] |
Z. Yang, W. Y. Wang, Y. Huang, et al., “Privacy-preserving public auditing scheme for data confidentiality and accountability in cloud storage,” Chinese Journal of Electronics, vol.28, no.1, pp.179–187, 2019. doi: 10.1049/cje.2018.02.017
|
[13] |
M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud computing,” Communications of the ACM, vol.53, no.4, pp.50–58, 2010. doi: 10.1145/1721654.1721672
|
[14] |
T. Wu, G. M. Yang, Y. Mu, et al., “Privacy-preserving proof of storage for the pay-as-you-go business model,” IEEE Transactions on Dependable and Secure Computing, vol.18, no.2, pp.563–575, 2021. doi: 10.1109/TDSC.2019.2931193
|
[15] |
T. G. Zimmerman, “Personal area networks: near-field intrabody communication,” IBM Systems Journal, vol.35, no.3.4, pp.609–617, 1996. doi: 10.1147/sj.353.0609
|
[16] |
G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homomorphic identification protocols,” in Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, pp.319–333, 2009.
|
[17] |
A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large files,” in Proceedings of ACM Conference on Computer and Communications Security, Alexandria, Virginia, USA, pp.584–597, 2007.
|
[18] |
H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, Melbourne, Australia, pp.90–107, 2008.
|
[19] |
D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, pp.514–532, 2001.
|
[20] |
H. Q. Wang, Q. H. Wu, B. Qin, et al., “Identity-based remote data possession checking in public clouds,” IET Information Security, vol.8, no.2, pp.114–121, 2014.
|
[21] |
Y. Yu, M. H. Au, G. Ateniese, et al., “Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage,” IEEE Transactions on Information Forensics and Security, vol.12, no.4, pp.767–778, 2017. doi: 10.1109/TIFS.2016.2615853
|
[22] |
J. G. Li, H. Yan, and Y. C. Zhang, “Certificateless public integrity checking of group shared data on cloud storage,” IEEE Transactions on Services Computing, vol.14, no.1, pp.71–81, 2021.
|
[23] |
D. B. He, N. Kumar, S. Zeadally, et al., “Certificateless provable data possession scheme for cloud-based smart grid data management systems,” IEEE Transactions on Industrial Informatics, vol.14, no.3, pp.1232–1241, 2018. doi: 10.1109/TII.2017.2761806
|
[24] |
Y. N. Qi, X. Tang, and Y. F. Huang, “Enabling efficient batch updating verification for multi-versioned data in cloud storage,” Chinese Journal of Electronics, vol.28, no.2, pp.377–385, 2019. doi: 10.1049/cje.2018.02.007
|
[25] |
G. Prakash, M. Prateek, and I. Singh, “Secure public auditing using batch processing for cloud data storage,” in Proceedings of International Conference on Smart System, Innovations and Computing, Jaipur, India, pp.137–148, 2018.
|
[26] |
D. B. He, S. Zeadally, and L. B. Wu, “Certificateless public auditing scheme for cloud-assisted wireless body area networks,” IEEE Systems Journal, vol.12, no.1, pp.64–73, 2018. doi: 10.1109/JSYST.2015.2428620
|
[27] |
C. M. Tang and X. J. Zhang, “A new publicly verifiable data possession on remote storage,” The Journal of Supercomputing, vol.75, no.1, pp.77–91, 2019. doi: 10.1007/s11227-015-1556-z
|
[28] |
X. J. Zhang, J. Zhao, C. X. Xu, et al., “CIPPPA: Conditional identity privacy-preserving public auditing for cloud-based WBANs against malicious auditors,” IEEE Transactions on Cloud Computing, vol.9, no.4, pp.1362–1375, 2021. doi: 10.1109/TCC.2019.2927219
|
[29] |
Y. Zhang, J. Yu, R. Hao, et al., “Enabling efficient user revocation in identity-based cloud storage auditing for shared big data,” IEEE Transactions on Dependable and Secure Computing, vol.17, no.3, pp.608–619, 2020.
|
[30] |
A. Rehman, L. Jian, M. Q. Yasin, et al., “Securing cloud storage by remote data integrity check with secured key generation,” Chinese Journal of Electronics, vol.30, no.3, pp.489–499, 2021. doi: 10.1049/cje.2021.04.002
|
[31] |
L. X. Huang, J. L. Zhou, G. X. Zhang, et al., “Certificateless public verification for data storage and sharing in the cloud,” Chinese Journal of Electronics, vol.29, no.4, pp.639–647, 2020. doi: 10.1049/cje.2020.05.007
|
[32] |
Y. J. Wang, Q. H. Wu, B. Qin, et al., “Identity-based data outsourcing with comprehensive auditing in clouds,” IEEE Trans. on Information Forensics and Security, vol.12, no.4, pp.940–952, 2017. doi: 10.1109/TIFS.2016.2646913
|
[33] |
H. Yan, J. G. Li, J. G. Han, et al., “A novel efficient remote data possession checking protocol in cloud storage,” IEEE Transactions on Information Forensics and Security, vol.12, no.1, pp.78–88, 2017. doi: 10.1109/TIFS.2016.2601070
|
[34] |
S. Thokchom and D. K. Saikia, “Privacy preserving integrity checking of shared dynamic cloud data with user revocation,” Journal of Information Security and Applications, vol.50, article no.102427, 2020. doi: 10.1016/j.jisa.2019.102427
|
[35] |
A. De Caro and V. Iovino, “jPBC: Java pairing based cryptography,” in Proceedings of IEEE Symposium on Computers and Communications, Kerkyra, Corfu, Greece, pp.850–855, 2011.
|