Citation: | LIU Yujie, WANG Yang, JIN Xiangliang, et al., “Analysis of Capacitance Characteristics of Light-Controlled Electrostatic Conversion Device,” Chinese Journal of Electronics, vol. 32, no. 2, pp. 389-396, 2023, doi: 10.23919/cje.2021.00.272 |
[1] |
Chu S and Majumdar A, “Opportunities and challenges for a sustainable energy future,” Nature, vol.488, no.7411, pp.294–303, 2012. doi: 10.1038/nature11475
|
[2] |
Debe M K, “Electrocatalyst approaches and challenges for automotive fuel cells,” Nature, vol.486, no.7401, pp.43–51, 2012. doi: 10.1038/nature11115
|
[3] |
Guney M S, “Solar power and application methods,” Renewable and Sustainable Energy Reviews, vol.57, pp.776–785, 2016. doi: 10.1016/j.rser.2015.12.055
|
[4] |
Morisson V, Rady M, Palomo E, et al., “Thermal energy storage systems for electricity production using solar energy direct steam generation technology,” Chemical Engineering and Processing: Process Intensification, vol.47, no.3, pp.499–507, 2008. doi: 10.1016/j.cep.2007.01.025
|
[5] |
Kumar M S, Charanadhar N, Srikanth V V S S, et al., “Materials in harnessing solar power,” Bulletin of Materials Science, vol.41, no.2, pp.1–19, 2018. doi: 10.1007/s12034-018-1554-x
|
[6] |
Siddiqui S, Kim D I, Roh E, et al., “A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system,” Nano Energy, vol.30, pp.434–442, 2016. doi: 10.1016/j.nanoen.2016.10.034
|
[7] |
Deng W, Jin L, Chen Y, et al., “An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator,” Nanoscale, vol.10, no.2, pp.843–847, 2018. doi: 10.1039/C7NR07325A
|
[8] |
Rafique S, Kasi A K, Kasi J K, et al., “Fabrication of Br doped ZnO nanosheets piezoelectric nanogenerator for pressure and position sensing applications,” Current Applied Physics, vol.21, pp.72–79, 2021. doi: 10.1016/j.cap.2020.10.004
|
[9] |
Liu D, Yin X, Guo H, et al., “A constant current triboelectric nanogenerator arising from electrostatic breakdown,” Science advances, vol.5, no.4, article no.aav6437, 2019. doi: 10.1126/sciadv.aav6437
|
[10] |
Moon H, Chung J, Kim B, et al., “Stack/flutter-driven self-retracting triboelectric nanogenerator for portable electronics,” Nano Energy, vol.31, pp.525–532, 2017. doi: 10.1016/j.nanoen.2016.11.046
|
[11] |
Han J M, Wang M, Tong Z M, et al., “Triboelectric nanogenerator based on graphene forest of electrodes,” Journal of Inorganic Materials, vol.34, no.8, article no.22, 2019.
|
[12] |
Zhai L, Gao L, Wang Z, et al., “An energy harvester coupled with a triboelectric mechanism and electrostatic mechanism for biomechanical energy harvesting,” Nanomaterials, vol.12, no.6, article no.933, 2022. doi: 10.3390/nano12060933
|
[13] |
Erturun U, Eisape A, and West J E, “Design and analysis of a vibration energy harvester using push-pull electrostatic conversion,” Smart Materials and Structures, vol.29, no.10, article no.105018, 2020. doi: 10.1088/1361-665X/aba5e2
|
[14] |
Erturun U, Eisape A A, Kang S H, et al., “Energy harvester using piezoelectric nanogenerator and electrostatic generator,” Applied Physics Letters, vol.118, no.6, article no.063902, 2021. doi: 10.1063/5.0030302
|
[15] |
Cheng G, Lin Z H, Du Z, et al., “Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator,” ACS Nano, vol.8, no.2, pp.1932–1939, 2014. doi: 10.1021/nn406565k
|