A Low Complexity Distributed Multitarget Detection and Tracking Algorithm
 
                
                 
                
                    
                                                            
                    - 
Abstract
    In this paper, we propose a low complexity distributed approach to address the multitarget detection/tracking problem in the presence of noisy and missing data. The proposed approach consists of two components: a distributed flooding scheme for measurements exchanging among sensors and a sampling-based clustering approach for target detection/tracking from the aggregated measurements. The main advantage of the proposed approach over the prevailing Markov-Bayes-based distributed filters is that it does not require any priori information and all the information required is the measurement set from multiple sensors. A comparison of the proposed approach with the available distributed clustering approaches and the cutting edge distributed multi-Bernoulli filters that are modeled with appropriate parameters confirms the effectiveness and the reliability of the proposed approach.
 
- 
                          
-