Citation: | Fang WANG, Xinjian ZHANG, Xin CHEN, et al., “Priority Encoder Based on DNA Strand Displacement,” Chinese Journal of Electronics, vol. 33, no. 6, pp. 1–8, 2024 doi: 10.23919/cje.2022.00.042 |
[1] |
L. M. Adleman, “Molecular computation of solutions to combinatorial problems,” Science, vol. 266, no. 5187, pp. 1021–1024, 1994. doi: 10.1126/science.7973651
|
[2] |
Y. Benenson, “Biocomputers: From test tubes to live cells,” Molecular BioSystems, vol. 5, no. 7, pp. 675–685, 2009. doi: 10.1039/b902484k
|
[3] |
E. Katz and V. Privman, “Enzyme-based logic systems for information processing,” Chemical Society Reviews, vol. 39, no. 5, pp. 1835–1857, 2010. doi: 10.1039/B806038J
|
[4] |
I. S. de Murieta, J. M. Miro-Bueno, and A. Rodriguez-Paton, “Biomolecular computers,” Current Bioinformatics, vol. 6, no. 2, pp. 173–184, 2011. doi: 10.2174/1574893611106020173
|
[5] |
M. Zhou and S. J. Dong, “Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors,” Accounts of Chemical Research, vol. 44, no. 11, pp. 1232–1243, 2011. doi: 10.1021/ar200096g
|
[6] |
W. E. Arter, Y. Yusim, Q. Peter, et al., “Digital sensing and molecular computation by an enzyme-free DNA circuit,” ACS Nano, vol. 14, no. 5, pp. 5763–5771, 2020. doi: 10.1021/acsnano.0c00628
|
[7] |
Q. Lin, A. M. Wang, S. Y. Liu, et al., “A DNA tetrahedron-based molecular computation device for the logic sensing of dual microRNAs in living cells,” Chemical Communications, vol. 56, no. 39, pp. 5303–5306, 2020. doi: 10.1039/d0cc01231a
|
[8] |
B. Y. Wang, C. Chalk, and D. Soloveichik, “SIMD| | DNA: Single instruction, multiple data computation with DNA strand displacement cascades,” in 25th International Conference on DNA Computing and Molecular Programming, Seattle, WA, USA, pp. 219–235, 2019.
|
[9] |
F. Wang, H. Lv, Q. Li, et al., “Implementing digital computing with DNA-based switching circuits,” Nature Communications, vol. 11, no. 1, article no. 121, 2020. doi: 10.1038/s41467-019-13980-y
|
[10] |
C. Zhang, Y. M. Zhao, X. M. Xu, et al., “Cancer diagnosis with DNA molecular computation,” Nature Nanotechnology, vol. 15, no. 8, pp. 709–715, 2020. doi: 10.1038/s41565-020-0699-0
|
[11] |
G. T. Walker, M. S. Fraiser, J. L. Schram, et al., “Strand displacement amplification—an isothermal, in vitro DNA amplification technique,” Nucleic Acids Research, vol. 20, no. 7, pp. 1691–1696, 1992. doi: 10.1093/nar/20.7.1691
|
[12] |
L. L. Qian and E. Winfree, “Scaling up digital circuit computation with DNA strand displacement cascades,” Science, vol. 332, no. 6034, pp. 1196–1201, 2011. doi: 10.1126/science.1200520
|
[13] |
R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Computation, vol. 10, no. 7, pp. 1601–1638, 1998. doi: 10.1162/089976698300017052
|
[14] |
A. Eshra, S. Shah, T. Q. Song, et al., “Renewable DNA hairpin-based logic circuits,” IEEE Transactions on Nanotechnology, vol. 18, pp. 252–259, 2019. doi: 10.1109/TNANO.2019.2896189
|
[15] |
T. Q. Song, A. Eshra, S. Shah, et al., “Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase,” Nature Nanotechnology, vol. 14, no. 11, pp. 1075–1081, 2019. doi: 10.1038/s41565-019-0544-5
|
[16] |
G. Seelig, D. Soloveichik, D. Y. Zhang, et al., “Enzyme-free nucleic acid logic circuits,” Science, vol. 314, no. 5805, pp. 1585–1588, 2006. doi: 10.1126/science.1132493
|
[17] |
B. M. Frezza, S. L. Cockroft, and M. R. Ghadiri, “Modular multi-level circuits from immobilized DNA-based logic gates,” Journal of the American Chemical Society, vol. 129, no. 48, pp. 14875–14879, 2007. doi: 10.1021/ja0710149
|
[18] |
C. Zhang, J. Yang, and J. Xu, “Circular DNA logic gates with strand displacement,” Langmuir, vol. 26, no. 3, pp. 1416–1419, 2010. doi: 10.1021/la903137f
|
[19] |
L. L. Qian and E. Winfree, “A simple DNA gate motif for synthesizing large-scale circuits,” Journal of the Royal Society Interface, vol. 8, no. 62, pp. 1281–1297, 2011. doi: 10.1098/rsif.2010.0729
|
[20] |
D. Y. Zhang and G. Seelig, “Dynamic DNA nanotechnology using strand-displacement reactions,” Nature Chemistry, vol. 3, no. 2, pp. 103–113, 2011. doi: 10.1038/nchem.957
|
[21] |
B. Yurke, A. J. Turberfield, A. P. Jr. Mills, et al., “A DNA-fuelled molecular machine made of DNA,” Nature, vol. 406, no. 6796, pp. 605–608, 2000. doi: 10.1038/35020524
|
[22] |
B. Yurke and A. P. Mills, “Using DNA to power nanostructures,” Genetic Programming and Evolvable Machines, vol. 4, no. 2, pp. 111–122, 2003. doi: 10.1023/A:1023928811651
|
[23] |
J. J. Mulawka, P. Wasiewicz, and A. Plucienniczak, “Another logical molecular NAND gate system,” in Proceedings of the Seventh International Conference on microelectronics for Neural, Fuzzy and Bio-Inspired Systems, Granada, Spain, pp. 340–345, 1999.
|
[24] |
M. Ruiz-Perez and A. Virazel, “Logic gates made with DNA,” in Innovative Computer Architectures and Concepts Seminar, Citeseer, 2002.
|
[25] |
C. Z. Chen, W. Xiao, J. W. Zhao, et al., “DNA logic circuits based on accurate step function gate,” IEEE Access, vol. 8, pp. 125513–125520, 2020. doi: 10.1109/ACCESS.2020.3003636
|
[26] |
D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate for chemical kinetics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5393–5398, 2010. doi: 10.1073/pnas.0909380107
|