Citation: | WU Qiong, SHI Shuai, WAN Ziyang, et al., “Towards V2I Age-Aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1230-1244, 2023, doi: 10.23919/cje.2022.00.093 |
[1] |
Q. Wu, H. X. Liu, C. Zhang, et al., “Trajectory protection schemes based on a gravity mobility model in IoT,” Electronics, vol.8, no.2, article no.148, 2019. doi: 10.3390/electronics8020148
|
[2] |
H. B. Zhu, Q. Wu, X. J. Wu, et al., “Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning,” IEEE Internet of Things Journal, vol.9, no.14, pp.12770–12782, 2022. doi: 10.1109/JIOT.2021.3138434
|
[3] |
J. H. Zhao, Q. P. Li, Y. Gong, et al., “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol.68, no.8, pp.7944–7956, 2019. doi: 10.1109/TVT.2019.2917890
|
[4] |
Q. Wu and J. Zheng, “Performance modeling and analysis of the ADHOC MAC protocol for VANETs,” in Proceedings of IEEE International Conference on Communication (ICC), London, UK, pp.3646–3652, 2015.
|
[5] |
Q. Wu, Y. Zhao, and Q. Fan, “Time-dependent performance modeling for platooning communications at intersection,” IEEE Internet of Things Journal, vol.9, no.19, pp.18500–18513, 2022. doi: 10.1109/JIOT.2022.3161028
|
[6] |
Defense Advanced Research Projects Agency, “Spectrum collaboration challenge (SC2),” Available at: https://www.darpa.mil/program/spectrum-collaboration-challenge, 2023.
|
[7] |
J. H. Zhao, L. H. Yang, M. H. Xia, et al., “Unified analysis of coordinated multipoint transmissions in mmWave cellular networks,” IEEE Internet of Things Journal, vol.9, no.14, pp.12166–12180, 2022. doi: 10.1109/JIOT.2021.3134017
|
[8] |
Q. Wu and J. Zheng, “Performance modeling and analysis of the ADHOC MAC protocol for vehicular networks,” Wireless Networks, vol.22, no.3, pp.799–812, 2016. doi: 10.1007/s11276-015-1000-6
|
[9] |
J. H. Zhao, X. K. Sun, Q. P. Li, et al., “Edge caching and computation management for real-time Internet of vehicles: An online and distributed approach,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.4, pp.2183–2197, 2021. doi: 10.1109/TITS.2020.3012966
|
[10] |
Q. Wu, H. M. Ge, P. Y. Fan, et al., “Time-dependent performance analysis of the 802.11p-based platooning communications under disturbance,” IEEE Transactions on Vehicular Technology, vol.69, no.12, pp.15760–15773, 2020. doi: 10.1109/TVT.2020.3034622
|
[11] |
W. W. Lu, S. L. Gong, Y. H. Zhu, “Timely data delivery for energy-harvesting IoT devices,” Chinese Journal of Electronics, vol.31, no.2, pp.322–336, 2022. doi: 10.1049/cje.2021.00.005
|
[12] |
R. D. Yates, Y. Sun, D. R. Brown, et al., “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol.39, no.5, pp.1183–1210, 2021. doi: 10.1109/JSAC.2021.3065072
|
[13] |
X. F. Chen, C. Wu, T. Chen, et al., “Age of information aware radio resource management in vehicular networks: A proactive deep reinforcement learning perspective,” IEEE Transactions on Wireless Communications, vol.19, no.4, pp.2268–2281, 2020. doi: 10.1109/TWC.2019.2963667
|
[14] |
M. K. Abdel-Aziz, S. Samarakoon, C. F. Liu, et al., “Optimized age of information tail for ultra-reliable low-latency communications in vehicular networks,” IEEE Transactions on Communications, vol.68, no.3, pp.1911–1924, 2020. doi: 10.1109/TCOMM.2019.2961083
|
[15] |
Q. Wu, Z. Y. Wan, Q. Fan, et al., “Velocity-adaptive access scheme for MEC-assisted platooning networks: Access fairness via data freshness,” IEEE Internet of Things Journal, vol.9, no.6, pp.4229–4244, 2022. doi: 10.1109/JIOT.2021.3103325
|
[16] |
J. Lv, X. M. Zhang, X. J. Han, et al., “A novel adaptively dynamic tuning of the contention window (CW) for distributed coordination function in IEEE 802.11 Ad hoc networks,” in Proceedings of 2007 International Conference on Convergence Information Technology (ICCIT 2007), Gwangju, Korea (South), pp.290–294, 2007.
|
[17] |
C. Wu, S. Ohzahata, Y. S. Ji, et al., “A MAC protocol for delay-sensitive VANET applications with self-learning contention scheme,” in Proceedings of 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, pp.438–443, 2014.
|
[18] |
A. Jamali, S. M. S. Hemami, M. Berenjkoub, et al., “An adaptive MAC protocol for wireless LANs,” Journal of Communications and Networks, vol.16, no.3, pp.311–321, 2014. doi: 10.1109/JCN.2014.000052
|
[19] |
X. Zhou, C. W. Zheng, and X. X. He, “Adaptive contention window tuning for IEEE 802.11,” in Proceedings of 2015 22nd International Conference on Telecommunications (ICT), Sydney, NSW, Australia, pp.74–79, 2015.
|
[20] |
A. Pressas, Z. G. Sheng, F. Ali, et al., “Contention-based learning MAC protocol for broadcast vehicle-to-vehicle communication,” in Proceedings of 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, pp.263–270, 2017.
|
[21] |
C. Wu, Z. Liu, F. Q. Liu, et al., “Collaborative learning of communication routes in edge-enabled multi-access vehicular environment,” IEEE Transactions on Cognitive Communications and Networking, vol.6, no.4, pp.1155–1165, 2020. doi: 10.1109/TCCN.2020.3002253
|
[22] |
X. W. Wu, X. H. Li, J. Li, et al., “Deep reinforcement learning for IoT networks: Age of information and energy cost tradeoff,” in Proceedings of GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, China, pp.1–6, 2020.
|
[23] |
F. Y. Wu, H. L. Zhang, J. J. Wu, et al., “UAV-to-device underlay communications: Age of information minimization by multi-agent deep reinforcement learning,” IEEE Transactions on Communications, vol.69, no.7, pp.4461–4475, 2021. doi: 10.1109/TCOMM.2021.3065135
|
[24] |
S. H. Wang, M. Z. Chen, W. Saad, et al., “Reinforcement learning for minimizing age of information under realistic physical dynamics,” in Proceedings of GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, China, pp.1–6, 2020.
|
[25] |
B. Han, Y. Zhu, Z. Y. Jiang, et al., “Fairness for freshness: Optimal age of information based OFDMA scheduling with minimal knowledge,” IEEE Transactions on Wireless Communications, vol.20, no.12, pp.7903–7919, 2021. doi: 10.1109/TWC.2021.3088719
|
[26] |
S. Y. Leng and A. Yener, “An actor-critic reinforcement learning approach to minimum age of information scheduling in energy harvesting networks,” in Proceedings of ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, pp.8128–8132, 2021.
|
[27] |
I. Kadota and E. Modiano, “Minimizing the age of information in wireless networks with stochastic arrivals,” IEEE Transactions on Mobile Computing, vol.20, no.3, pp.1173–1185, 2021. doi: 10.1109/TMC.2019.2959774
|
[28] |
G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol.18, no.3, pp.535–547, 2000. doi: 10.1109/49.840210
|
[29] |
P. Peng, F. Zhu, Q. Liu, et al., “Achieving safe deep reinforcement learning via environment comprehension mechanism,” Chinese Journal of Electronics, vol.30, no.6, pp.1049–1058, 2021. doi: 10.1049/cje.2021.07.025
|
[30] |
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA, 1998.
|
[31] |
H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, pp.2094–2100, 2016.
|
[32] |
Y. Zhang, P. Sun, Y. H. Yin, et al., “Human-like autonomous vehicle speed control by deep reinforcement learning with double Q-learning,” in Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp.1251–1256, 2018.
|
[33] |
Z. Y. Wang, T. Schaul, M. Hessel, et al., “Dueling network architectures for deep reinforcement learning,” in Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, pp.1995–2003, 2016.
|
[34] |
M. Hessel, J. Modayil, H. van Hasselt, et al., “Rainbow: Combining improvements in deep reinforcement learning,” in Proceedings of the 32nd AAAI conference on Artificial Intelligence, New Orleans, LA, USA, pp.3215–3222, 2018.
|
[35] |
B. Li, S. Y. Liang, D. Q. Chen, et al., “A decision-making method for air combat maneuver based on hybrid deep learning network,” Chinese Journal of Electronics, vol.31, no.1, pp.107–115, 2022. doi: 10.1049/cje.2020.00.075
|
[36] |
M. Fortunato, M. G. Azar, B. Piot, et al., Noisy networks for exploration, arXiv preprint, arXiv: 1706.10295, 2017.
|
[37] |
H. van Hasselt, A. Guez, M. Hessel, et al., “Learning values across many orders of magnitude,” in Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, pp.4294–4302, 2016.
|