Citation: | ZHOU Jiarui, ZHU Zexuan, JI Zhen, “A Memetic Algorithm Based Feature Weighting for Metabolomics Data Classification,” Chinese Journal of Electronics, vol. 23, no. 4, pp. 706-711, 2014, |
M. Brown, W. Dunn, P. Dobson, et al., Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics, Analyst, Vol.134, No.7, pp.1322-1332, 2009.
|
O. Fiehn, J. Kopka, P. Dörmann, et al., Metabolite profiling for plant functional genomics, Nature Biotechnology, Vol.18, No.11, pp.1157-1161, 2000.
|
M. Brown, D. Wedge, R. Goodacre, et al., Automated workflows for accurate mass-based putative metabolite identification in lc/ms-derived metabolomic datasets, Bioinformatics, Vol.27, No.8, pp.1108-1112, 2011.
|
C. Smith, J. Elizabeth, G. O'Maille, et al., Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Analytical Chemistry, Vol.78, No.3, pp.779-787, 2006.
|
H. Redestig and I. Costa, Detection and interpretation of metabolite-transcript coresponses using combined profiling data, Bioinformatics, Vol.27, No.13, pp.i357-i365, 2011.
|
D. Brougham, G. Ivanova, M. Gottschalk, et al., Artificial neural networks for classification in metabolomic studies of whole cells using 1h nuclear magnetic resonance, Journal of Biomedicine and Biotechnology, Vol.2011, 2010.
|
R. Davis, A. Charlton, S. Oehlschlager, et al., Novel feature selection method for genetic programming using metabolomic 1h NMR data, Chemometrics and Intelligent Laboratory Systems, Vol.81, No.1, pp.50-59, 2006.
|
B. Kenneth, B. Lorraine and C. P'adraig, Metafind: A feature analysis tool for metabolomics data, BMC Bioinformatics, Vol.9, No.1, pp.470, 2008.
|
S. Mahadevan, S. Shah, T. Marrie, et al., Analysis of metabolomic data using support vector machines, Analytical Chemistry, Vol.80, No.19, pp.7562-7570, 2008.
|
Y.H. Cheng, Y.Y. Tong and X.S. Wang, Selective Bayesian classifier based on semi-supervised clustering, Chinese Journal of Electronics, Vol.21, No.1, pp.73-77, 2012.
|
P. Moscato and C. Cotta, A gentle introduction to memetic algorithms, Handbook of metaheuristics, Springer, USA, pp.105-144, 2003.
|
Y.S. Ong, M.H. Lim and X.S. Chen, Research frontier: Memetic computation - past, present & future, IEEE Computational Intelligence Magazine, Vol.5, No.2, pp.24-36, 2010.
|
G. Huang, Q. Zhu and C. Siew, Extreme learning machine: Theory and applications, Neurocomputing, Vol.70, No.1, pp.489-501, 2006.
|
G. Huang, D. Wang and Y. Lan, Extreme learning machines: A survey, International Journal of Machine Learning and Cybernetics, Vol.2, No.2, pp.107-122, 2011.
|
G. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.42, No.2, pp.513-529, 2012.
|
D. Wolpert and W. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, Vol.1, No.1, pp.67-82, 1997.
|
Y. Ho and D. Pepyne, Simple explanation of the no-free-lunch theorem and its implications, Journal of Optimization Theory and Applications, Vol.115, No.3, pp.549-570, 2002.
|
A. LaTorre, S. Muelas and J. Peña, A mos-based dynamic memetic differential evolution algorithm for continuous optimization: A scalability test, Soft Computing - A Fusion of Foundations, Methodologies and Applications, Vol.15, No.11, pp.2187-2199, 2011.
|
D. Molina, M. Lozano, C. Garcia-Martinez, et al., Memetic algorithms for continuous optimisation based on local search chains, Evolutionary Computation, Vol.18, No.1, pp.27-63, 2010.
|
A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory, Vol.13, No.2, pp.260-269, 1967.
|
D.A. Richards, M.A. Silva, N. Murphy, et al., Extracellular amino acid levels in the human liver during transplantation: A microdialysis study from donor to recipient, Amino Acids, Vol.33, No.3, pp.429-437, 2007.
|
A. Qin and P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, Proc. of IEEE Congress on Evolutionary Computation, Edinburgh, UK, pp.1785-1791, 2005.
|
J. Liang, A. Qin, P. Suganthan, et al., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transactions on Evolutionary Computation, Vol.10, No.3, pp.281-295, 2006.
|
Z. Zhan, J. Zhang, Y. Li, et al., Orthogonal learning particle swarm optimization, IEEE Transactions on Evolutionary Computation, Vol.15, No.6, pp.832-847, 2011.
|
M. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The Computer Journal, Vol.7, No.2, pp.155-162, 1964.
|
D. Davies, W. Swann and I. Campey, Report on the development of a new direct search method of optimization, ICI Ltd., Central Instrument Laboratory Research Note, 1964.
|
A. Curtis, Classification using lda, qda and logistic regression, Mach Learn, Vol.3, pp.1-23, 2005.
|