Citation: | WANG Xuesong, ZHAO Jijuan, CHENG Yuhu, et al. “Joint Feature Representation and Classifier Learning Based Unsupervised Domain Adaption ELM”. Chinese Journal of Electronics, vol. 30 no. 1. doi: 10.1049/cje.2020.11.008 |
[1] |
G. Huang, Q. Zhu and C. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks", Proc. ofIEEE International Joint Conference on Neural Networks, Budapest, Hungary pp.985-990, 2004.
|
[2] |
G. Huang, Q. Zhu and C. Siew, "Extreme learning machine: theory and applications", Neurocomputing, Vol. 70, No. 1, pp.489-501, 2006. http://www.sciencedirect.com/science/article/pii/S0925231206000385
|
[3] |
A. Baradarani, Q. M. Jonathan and M. Ahmadi, "An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTCWT filtering", Pattern Recognition, Vol. 46, No. 1, pp.57-72, 2013. doi: 10.1016/j.patcog.2012.06.007
|
[4] |
B. He, D. Xu, R. Nian, et al., "Fast face recognition via sparse coding and extreme learning machine", Cognitive Computation, Vol. 6, No. 2, pp.264-277, 2014. doi: 10.1007/s12559-013-9224-1
|
[5] |
Q. Liu, M. Gao, T. Zhang, et al., "Feedforward neural network models for FPGA routing channel width estimation", Chinese Journal of Electronics, Vol. 25, No. 1, pp.71-76, 2016. doi: 10.1049/cje.2016.01.011
|
[6] |
J. Zhou, Z. Zhu, Z. Ji, et al., "A memetic algorithm based feature weighting for metabolomics data classification", Chinese Journal of Electronics, Vol. 23, No. 3, pp.706-711, 2014. http://cje.ejournal.org.cn/en/article/id/8587
|
[7] |
G. Huang, H. Zhou, X. Ding, et al., "Extreme learning machine for regression and multiclass classification", IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), Vol. 42, No. 2, pp.513-529, 2012. doi: 10.1109/TSMCB.2011.2168604
|
[8] |
J. Meng, G. Y. Hu, Z. S. Pan, et al., "Research and perspective on domain adaption algorithms", Computer Science, Vol. 42, No. 10, pp.7-12, 2015. (in Chinese)
|
[9] |
X. Wang, Y. Ma and Y. Cheng, "Domain adaptation network based on autoencoder", Chinese Journal of Electronics, Vol. 27, No. 6, pp.1258-1264, 2018. doi: 10.1049/cje.2018.09.001
|
[10] |
S. Zang, Y. Cheng, X. Wang, et al., "Semi-supervised transfer discriminant analysis based on cross-domain mean constraint", Artificial Intelligence Review, Vol. 49, No. 4, pp.581-595, 2018. doi: 10.1007/s10462-016-9533-3
|
[11] |
L. Zhang and D. Zhang, "Domain adaption extreme learning machine for drift compensation in E-nose systems", IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 7, pp.1790-1801, 2015. doi: 10.1109/TIM.2014.2367775
|
[12] |
S. Li, S. Song, G. Huang, et al., "Cross-domain extreme learning machines for domain adaption", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 49, No. 6, pp.1194-1207, 2019. doi: 10.1109/TSMC.2017.2735997
|
[13] |
B. Zhang, Y. Liu, H. Yuan, et al., "A joint unsupervised cross-domain model via scalable discriminative extreme learning machine", Cognitive Computation, Vol. 10, No. 4, pp.577-590, 2018. doi: 10.1007/s12559-018-9555-z
|
[14] |
X. Wang, J. Zhao and Y. Cheng, "Unsupervised domain adaption classifier via ELM", Control and Decision} available at http://kns.cnki.net/KCMS/detail/21.1124.TP.20181119.170\\4.011.html, 2018-11-19. (in Chinese)
|
[15] |
Y. Liu, L. Zhang, P. Deng, et al., "Common subspace learning via cross-domain extreme learning machine", Cognitive Computation, Vol. 9, No. 4, pp.555-563, 2017. doi: 10.1007/s12559-017-9473-5
|
[16] |
Y. Chen, S. Song, S. Li, et al., "Domain space transfer extreme learning machine for domain adaption", IEEE Transactions on Cybernetics, Vol. 49, No. 5, pp.1909-1922, 2019. doi: 10.1109/TCYB.2018.2816981
|
[17] |
M. Long, J. Wang, G. Ding, et al. "Transfer feature learning with joint distribution adaptation", Proc. ofthe 14th IEEE International Conference on Computer Vision, Sydney, NSW, Australia, pp.2200-2207, 2013.
|
[18] |
J. Zhang, W. Li and P. Ogunbona, "Joint geometrical and statistical alignment for visual domain adaption", Proc. ofthe 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, United states, pp.5150-5158, 2017.
|
[19] |
W. Huang, X. Wang, G. Li, et al., "Semi-supervised Artificial Immune Mixture Models Clustering", Chinese Journal of Electronics, Vol. 25, No. 2, pp.249-255, 2016. doi: 10.1049/cje.2016.03.009
|
[20] |
B. Fernando, A. Habrard, M. Sebban, et al., "Unsupervised visual domain adaption using subspace alignment", Proc. ofthe 14th IEEE International Conference on Computer Vision, Sydney, NSW, Australia, pp.2960-2967, 2013.
|
[21] |
G. Huang, S. Song, J N D. Gupta, et al., "Semi-supervised and unsupervised extreme learning machines", IEEE Transactions on Cybernetics, Vol. 44, No. 12, pp.2405-2417, 2014. doi: 10.1109/TCYB.2014.2307349
|
[22] |
B. Gong, Y. Shi and F. Sha, "Geodesic flow kernel for unsupervised domain adaption", Proc. ofIEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, United states, pp.2066-2073, 2012.
|
[23] |
L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE", Journal of Machine Learning, Vol. 9, pp.2579-2605, 2008. http://www.mendeley.com/catalog/visualizing-data-using-tsne/
|