Citation: | TIAN Ye, ZHANG Xingyi, HE Cheng, TAN Kay Chen, JIN Yaochu. Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics[J]. Chinese Journal of Electronics, 2023, 32(1): 111-129. doi: 10.23919/cje.2022.00.100 |
[1] |
M. R. Alam, K. S. Lee, M. Rahman, and Y. F. Zhang, “Process planning optimization for the manufacture of injection moulds using a genetic algorithm,” International Journal of Computer Integrated Manufacturing, vol.16, no.3, pp.181–191, 2003. doi: 10.1080/0951192021000025742
|
[2] |
J. Y. Potvin and S. Bengio, “The vehicle routing problem with time windows part Ⅱ: Genetic search,” INFORMS Journal on Computing, vol.8, no.2, pp.165–172, 1996. doi: 10.1287/ijoc.8.2.165
|
[3] |
Y. Tian, X. Su, Y. Su, and X. Zhang, “EMODMI: A multi-objective optimization based method to identify disease modules,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol.5, no.4, pp.570–582, 2021. doi: 10.1109/TETCI.2020.3014923
|
[4] |
K. J. Oh, T. Y. Kim, and S. Min, “Using genetic algorithm to support portfolio optimization for index fund management,” Expert Systems with Applications, vol.28, pp.371–379, 2005. doi: 10.1016/j.eswa.2004.10.014
|
[5] |
H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, vol.22, no.3, pp.400–407, 1951. doi: 10.1214/aoms/1177729586
|
[6] |
J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, USA, 1992.
|
[7] |
R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol.11, no.4, pp.341–359, 1997. doi: 10.1023/A:1008202821328
|
[8] |
N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evolutionary Computation, vol.9, no.2, pp.159–195, 2001. doi: 10.1162/106365601750190398
|
[9] |
X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol.3, no.2, pp.82–102, 1999. doi: 10.1109/4235.771163
|
[10] |
R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39–43, 1995.
|
[11] |
K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European Journal of Operational Research, vol.185, no.3, pp.1155–1173, 2008. doi: 10.1016/j.ejor.2006.06.046
|
[12] |
D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Technical Report, TR06, Erciyes University, 2005.
|
[13] |
J. Galletly, “Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms,” Kybernetes, vol.27, no.8, pp.979–980, 1998. doi: 10.1108/k.1998.27.8.979.4
|
[14] |
T. Okabe, Y. Jin, and B. Sendhoff, “Theoretical comparisons of search dynamics of genetic algorithms and evolution strategies,” in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, pp. 382–389, 2005.
|
[15] |
S. Li, Y. Li, and Y. Lin, Intelligent Optimization Algorithms and Emergent Computation, Tsinghua University Press, Beijing, China, 2019.
|
[16] |
A. E. Eiben and C. A. Schippers, “On evolutionary exploration and exploitation,” Fundamenta Informaticae, vol.35, pp.1–16, 1998. doi: 10.3233/FI-1998-35123401
|
[17] |
Y. Su, N. Guo, Y. Tian, and X. Zhang, “A non-revisiting genetic algorithm based on a novel binary space partition tree,” Information Sciences, vol.512, pp.661–674, 2020. doi: 10.1016/j.ins.2019.10.016
|
[18] |
H. Li and Q. Zhang, “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ,” IEEE Transactions on Evolutionary Computation, vol.13, no.2, pp.284–302, 2009. doi: 10.1109/TEVC.2008.925798
|
[19] |
T. Rodemann, “Industrial portfolio management for many-objective optimization algorithms,” in Proceedings of the 2018 IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil, pp.1-8, 2018.
|
[20] |
C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for multiple objective particle swarm optimization,” in Proceedings of the 2002 IEEE Congress on Evolutionary Computation, Honolulu, HI, USA, pp.1051–1056, 2002.
|
[21] |
M. Jebalia, A. Auger, and N. Hansen, “Log-linear convergence and divergence of the scale-invariant (1+1)-ES in noisy environments,” Algorithmica, vol.59, no.3, pp.425–460, 2011. doi: 10.1007/s00453-010-9403-3
|
[22] |
F. Caraffini and F. Neri, “A study on rotation invariance in differential evolution,” Swarm and Evolutionary Computation, vol.50, article no.100436, 2019. doi: 10.1016/j.swevo.2018.08.013
|
[23] |
G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter control in evolutionary algorithms: Trends and challenges,” IEEE Transactions on Evolutionary Computation, vol.19, no.2, pp.167–187, 2015. doi: 10.1109/TEVC.2014.2308294
|
[24] |
C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning methods for metaheuristics,” IEEE Transactions on Evolutionary Computation, vol.24, no.2, pp.201–216, 2020. doi: 10.1109/TEVC.2019.2921598
|
[25] |
P. Kerschke and H. Trautmann, “Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning,” Evolutionary Computation, vol.27, no.1, pp.99–127, 2019. doi: 10.1162/evco_a_00236
|
[26] |
Y. Tian, S. Peng, X. Zhang, et al., “A recommender system for metaheuristic algorithms for continuous optimization based on deep recurrent neural networks,” IEEE Transactions on Artificial Intelligence, vol.1, no.1, pp.5–18, 2020. doi: 10.1109/TAI.2020.3022339
|
[27] |
K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary Computation, vol.18, no.1, pp.114–130, 2014. doi: 10.1109/TEVC.2013.2239648
|
[28] |
L. C. Bezerra, M. López-Ibánez, and T. Stützle, “Automatic component-wise design of multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol.20, no.3, pp.403–417, 2016. doi: 10.1109/TEVC.2015.2474158
|
[29] |
L. P. M. Birattari, T. Stützle, and K. Varrentrapp, “A racing algorithm for configuring metaheuristics,” in Proceedings of the 2002 Conference on Genetic and Evolutionary Computation, New York, NY, USA, pp. 11–18, 2002.
|
[30] |
F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychological Review, vol.65, no.6, pp.386–408, 1958. doi: 10.1037/h0042519
|
[31] |
A. Fialho, M. Schoenauer, and M. Sebag, “Toward comparison-based adaptive operator selection,” in Proceedings of the 2010 Conference on Genetic and Evolutionary Computation, Portland, USA, pp.767–774, 2002.
|
[32] |
K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems, vol.9, no.4, pp.115–148, 1995.
|
[33] |
C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evolutionary Computation, vol.15, no.1, pp.1–28, 2007. doi: 10.1162/evco.2007.15.1.1
|
[34] |
N. Hansen, R. Ros, N. Mauny, et al., “Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems,” Applied Soft Computing, vol.11, no.8, pp.5755–5769, 2011. doi: 10.1016/j.asoc.2011.03.001
|
[35] |
K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics Volume I, Engineering Education System, Wichita, USA, 2000.
|
[36] |
L. Pan, W. Xu, L. Li, C. He, and R. Cheng, “Adaptive simulated binary crossover for rotated multi-objective optimization,” Swarm and Evolutionary Computation, vol.60, article no.100759, 2021. doi: 10.1016/j.swevo.2020.100759
|
[37] |
R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale optimization,” IEEE Transactions on Cybernetics, vol.45, no.2, pp.191–204, 2015. doi: 10.1109/TCYB.2014.2322602
|
[38] |
R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013.
|
[39] |
K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M. J. Ryan, “Improved multi-operator differential evolution algorithm for solving unconstrained problems,” in Proceedings of the 2020 IEEE Congress on Evolutionary Computation, Glasgow, UK, 2020.
|
[40] |
K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Computer Science and Informatics, vol.26, no.4, pp.30–45, 1996.
|
[41] |
J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary Computation, vol.1, no.1, pp.3–18, 2011. doi: 10.1016/j.swevo.2011.02.002
|
[42] |
X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark functions for the CEC’2013 special session and competition on large-scale global optimization,” Gene, vol.7, no.33, 2013.
|
[43] |
J. Sun, X. Liu, T. Bäck, and Z. Xu, “Learning adaptive differential evolution algorithm from optimization experiences by policy gradient,” IEEE Transactions on Evolutionary Computation, vol.25, no.4, pp.666–680, 2021. doi: 10.1109/TEVC.2021.3060811
|
[44] |
H. A. A. Nomer, A. W. Mohamed, and A. H. Yousef, “GSK-RL: Adaptive gaining-sharing knowledge algorithm using reinforcement learning,” in Proceedings of the 3rd Novel Intelligent and Leading Emerging Sciences Conference, Giza, Egypt, pp.169–174, 2021.
|