Turn off MathJax
Article Contents
Wenbo LI, Hongxin ZENG, Lin HUANG, et al., “A Review of Terahertz Solid-state Electronic/Optoelectronic Devices and Communication Systems,” Chinese Journal of Electronics, vol. x, no. x, pp. 1–23, xxxx doi: 10.23919/cje.2023.00.282
Citation: Wenbo LI, Hongxin ZENG, Lin HUANG, et al., “A Review of Terahertz Solid-state Electronic/Optoelectronic Devices and Communication Systems,” Chinese Journal of Electronics, vol. x, no. x, pp. 1–23, xxxx doi: 10.23919/cje.2023.00.282

A Review of Terahertz Solid-state Electronic/Optoelectronic Devices and Communication Systems

doi: 10.23919/cje.2023.00.282
More Information
  • Author Bio:

    Wenbo LI received the B.S. degree in Xidian University, Xi’an, China, in 2016, and he is currently pursuing the M.S. degree in physical electronics with the School of Electronic Science and Engineering in the University of Electronic Science and Technology of China, Chengdu, China. His research interest is terahertz multi-channel passive devices and antennas. (Email: 511526760@qq.com)

    Hongxin ZENG received the M.S. degree and Ph.D. degree in optics from the School of Electronic Science and Engineering in the University of Electronic Science and Technology of China, Chengdu, China. His research interests mainly include THz metasurface and THz communication systems. (Email: zenghx@uestc.edu.cn)

    Lin HUANG Ph.D., is the Professor in University of Electronic Science and Technology of China. His research interest is terahertz communication systems

    Sen GONG Ph.D., is the Professor in University of Electronic Science and Technology of China. His research interests mainly include terahertz solid-state devices and metamaterials

    Haoyi CAO is the Ph.D. candidate of University of Electronic Science and Technology of China. His research interests include terahertz communication system and solid-state devices

    Weipeng WANG is the P.D. candidate of University of Electronic Science and Technology of China. His fields of interest include terahertz power detection, cross media communication and medical ultrasonic treatment system

    Zheng WANG is the M.S. candidate of University of Electronic Science and Technology of China. His research interests mainly include terahertz communication system and terahertz channel characteristics

    Hongji ZHOU is the Ph.D. candidate of University of Electronic Science and Technology of China. His research interests include terahertz solid-state devices and metamaterials and microwave passive components

    Shixiong LIANG Ph.D., is currently a Senior Engineer with the Hebei Semi-conductor Research Institute Shijiazhuang in China. His research interests mainly include terahertz solid-state devices

    Ziqiang YANG was born in 1965, doctor, professor. He received his bachelor’s degree in microelectronics science and technology from University of Electronic Science and Technology of China in 1987. In 1990, he received a master’s degree in physical electronics from the Institute of High Energy, University of Electronic Science and Technology of China. In 2000, he received his doctorate degree in optics from the Institute of High Energy, University of Electronic Science and Technology of China. From 2004 to 2005, he worked as a postdoctoral fellow in Seoul National University, Korea for one year. He is currently working as professor in University of Electronic Science and Technology of China

    Yaxin ZHANG received his bachelor’s degree from Sichuan University in 2003, his master’s degree from University of Electronic Science and Technology of China in 2006, and his PhD from University of Electronic Science and Technology of China in 2009. Since 2006 he has been studying and working at the Terahertz Science and Technology Research Center at UESTC. He is mainly engaged in the research of terahertz high-speed wireless communication technology, including new terahertz signal sources, terahertz functional devices (terahertz modulator, resonator, filter, etc.), and terahertz meta-chip and communication systems for wireless communication. (Email: zhangyaxin@uestc.edu.cn)

  • Corresponding author: Email: zenghx@uestc.edu.cn; Email: zhangyaxin@uestc.edu.cn
  • Received Date: 2023-08-30
  • Accepted Date: 2023-12-12
  • Available Online: 2024-02-19
  • With the rapid development of modern communication technology, spectrum resources have become non-renewable and precious resources, and the terahertz frequency band has entered people’s vision. Nowadays, terahertz communication technology has become one of the core technologies for future high-capacity and high-rate communication. This paper discusses and analyzes the core technologies related to the field of terahertz communication. We introduce the characteristics, domestic and international comparisons and development trends of the core devices for terahertz communication, and also introduce and discuss the terahertz solid-state frequency mixing communication system, terahertz direct modulation communication system, and terahertz optoelectronic communication system. Finally, we summarize the development of terahertz communication technology and the outlook of future applications.
  • loading
  • [1]
    L. Zhang, X. D. Pang, S. Jia, et al., “Beyond 100 Gb/s optoelectronic terahertz communications: Key technologies and directions,” IEEE Communications Magazine, vol. 58, no. 11, pp. 34–40, 2020. doi: 10.1109/MCOM.001.2000254
    [2]
    H. Elayan, O. Amin, B. Shihada, et al., “Terahertz band: The last piece of RF spectrum puzzle for communication systems,” IEEE Open Journal of the Communications Society, vol. 1 pp. 1–32, 2020. doi: 10.1109/OJCOMS.2019.2953633
    [3]
    X. Y. Li, J. J. Yu, L. Zhao, et al., “1-Tb/s millimeter-wave signal wireless delivery at D-band,” Journal of Lightwave Technology, vol. 37, no. 1, pp. 196–204, 2019. doi: 10.1109/JLT.2018.2871472
    [4]
    H. Yang, S. L. Zheng, H. Q. Zhang, et al., “A THz-OAM wireless communication system based on transmissive metasurface,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 5, pp. 4194–4203, 2023. doi: 10.1109/TAP.2023.3255539
    [5]
    Y. Morishita, S. Lee, T. Teraoka, et al., “300-GHz-Band OFDM video transmission with CMOS TX/RX modules and 40dBi cassegrain antenna toward 6G,” IEICE Transactions on Electronics, vol. E104.C, no. 10, pp. 576–586, 2021. doi: 10.1587/transele.2021MMP0005
    [6]
    H. Hamada, T. Fujimura, I. Abdo, et al. , “300-GHz. 100-Gb/s InP-HEMT wireless transceiver using a 300-GHz fundamental mixer, ” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, pp. 1480–1483, 2018.
    [7]
    H. Hamada, T. Tsutsumi, H. Matsuzaki, et al., “300-GHz-Band 120-Gb/s wireless front-end based on InP-HEMT PAs and mixers,” IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2316–2335, 2020. doi: 10.1109/JSSC.2020.3005818
    [8]
    I. Dan, G. Ducournau, S. Hisatake, et al., “A terahertz wireless communication link using a superheterodyne approach,” IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 1, pp. 32–43, 2020. doi: 10.1109/TTHZ.2019.2953647
    [9]
    Y. Liu, B. Zhang, Y. N. Feng, et al., “10-Gbps real-time wireless link over 1.5 km at 220-GHz band based on Schottky-diode transceiver and 16-QAM modulation,” AEU - International Journal of Electronics and Communications, vol. 138 article no. 153874, 2021. doi: 10.1016/j.aeue.2021.153874
    [10]
    M. H. Eissa, A. Malignaggi, R. Y. Wang, et al., “Wideband 240-GHz transmitter and receiver in BiCMOS technology with 25-Gbit/s data rate,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2532–2542, 2018. doi: 10.1109/JSSC.2018.2839037
    [11]
    P. Rodríguez-Vázquez, J. Grzyb, B. Heinemann, et al., “A 16-QAM 100-Gb/s 1-M wireless link with an EVM of 17% at 230 GHz in an SiGe technology,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 297–299, 2019. doi: 10.1109/LMWC.2019.2899487
    [12]
    Y. N. Feng, B. Zhang, C. Zhi, et al., “A 20.8-Gbps dual-carrier wireless communication link in 220-GHz band,” China Communications, vol. 18, no. 5, pp. 210–220, 2021. doi: 10.23919/JCC.2021.05.013
    [13]
    P. Sen, J. V. Siles, N. Thawdar, et al., “Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications,” Nature Electronics, vol. 6, no. 2, pp. 164–175, 2022. doi: 10.1038/s41928-022-00897-6
    [14]
    C. Yi, S. H. Choi, M. Urteaga, et al., “20-Gb/s ON–OFF-keying modulators using 0.25- μm InP DHBT switches at 290 GHz,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 360–362, 2019. doi: 10.1109/LMWC.2019.2908878
    [15]
    A. Standaert and P. Reynaert, “A 390-GHz outphasing transmitter in 28-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2703–2713, 2020. doi: 10.1109/JSSC.2020.3006433
    [16]
    Y. Liang, C. C. Boon, H. C. Zhang, et al., “A 13.5-Gb/s 140-GHz silicon redriver exploiting metadevices for short-range OOK communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 239–253, 2022. doi: 10.1109/TMTT.2021.3124215
    [17]
    Z. Mehmood and M. Seo, “A high speed OOK modulator at 300 GHz using LO cancellation technique, ” in Proceedings of 2021 18th International SoC Design Conference, Jeju Island, Korea, Republic of, pp. 95–96, 2021.
    [18]
    D. Pirrone, A. Ferraro, D. C. Zografopoulos, et al., “Metasurface-based filters for high data rate THz wireless communication: Experimental validation of a 14 Gbps OOK and 104 Gbps QAM-16 wireless link in the 300 GHz band,” IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 8688–8697, 2022. doi: 10.1109/TWC.2022.3168399
    [19]
    Y. X. Zhang, K. S. Ding, H. X. Zeng, et al., “Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling,” Optica, vol. 9, no. 11, pp. 1268–1275, 2022. doi: 10.1364/OPTICA.469461
    [20]
    T. C. Zhou, Y. Z. Dong, S. Gong, et al., “A sub-terahertz high-speed traveling-wave switch modulator based on dynamically tunable double-resonant coupling units,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 10, pp. 4346–4356, 2023. doi: 10.1109/TMTT.2023.3260404
    [21]
    S. Jia, X. D. Pang, O. Ozolins, et al., “0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate,” Journal of Lightwave Technology, vol. 36, no. 2, pp. 610–616, 2018. doi: 10.1109/JLT.2017.2776320
    [22]
    S. Ummethala, T. Harter, K. Koehnle, et al., “THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator,” Nature Photonics, vol. 13, no. 8, pp. 519–524, 2019. doi: 10.1038/s41566-019-0475-6
    [23]
    S. W. Wang, Z. J. Lu, W. Li, et al., “26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals,” APL Photonics, vol. 5, no. 5, article no. 056105, 2020. doi: 10.1063/5.0003998
    [24]
    H. Q. Zhang, L. Zhang, S. W. Wang, et al. , “Aggregated 1.059 Tbit/s photonic-wireless transmission at 350 GHz over 10 meters, ” in Proceedings of the 26th Optoelectronics and Communications Conference, Hong Kong, China, article no. T5A. 3, 2021.
    [25]
    T. Harter, S. Ummethala, M. Blaicher, et al., “Wireless THz link with optoelectronic transmitter and receiver,” Optica, vol. 6, no. 8, pp. 1063–1070, 2019. doi: 10.1364/OPTICA.6.001063
    [26]
    S. Jia, L. Zhang, S. W. Wang, et al., “2 × 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission,” Journal of Lightwave Technology, vol. 38, no. 17, pp. 4715–4721, 2020. doi: 10.1109/JLT.2020.2995702
    [27]
    S. R. Moon, M. Sung, J. K. Lee, et al., “Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band,” Journal of Lightwave Technology, vol. 39, no. 2, pp. 357–362, 2021. doi: 10.1109/JLT.2020.3032613
    [28]
    S. Nellen, S. Lauck, E. Peytavit, et al., “Coherent wireless link at 300 GHz with 160 Gbit/s enabled by a photonic transmitter,” Journal of Lightwave Technology, vol. 40, no. 13, pp. 4178–4185, 2022. doi: 10.1109/JLT.2022.3160096
    [29]
    H. J. Zhou, Y. X. Zhang, S. X. Liang, et al. , “0.22THz wideband doubler based on a single-chip GaAs monolithic integration, ” in Proceedings of 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves, Delft, Netherlands, pp. 1–2, 2022.
    [30]
    T. Skaik, C. Viegas, J. Powell, et al., “125 GHz frequency doubler using a waveguide cavity produced by stereolithography,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 2, pp. 217–220, 2022. doi: 10.1109/TTHZ.2021.3131915
    [31]
    X. Z. Wen, H. D. Yang, Z. X. Wu, et al., “A 100–180-GHz coaxial frequency Tripler based on copper additive manufacturing,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 10, pp. 4337–4345, 2023. doi: 10.1109/TMTT.2023.3254304
    [32]
    C. Guo, X. Z. Wen, Z. X. Wu, et al., “A 135–150 GHz high-power frequency tripler with filtering matching network,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1327–1330, 2022. doi: 10.1109/LMWC.2022.3177252
    [33]
    S. X. Liang, X. B. Song, L. S. Zhang, et al., “A 177–183 GHz high-power GaN-based frequency doubler with over 200 mW output power,” IEEE Electron Device Letters, vol. 41, no. 5, pp. 669–672, 2020. doi: 10.1109/LED.2020.2981939
    [34]
    Z. K. Li, J. X. Chen, D. W. Tang, et al., “A 205–273-GHz frequency multiplier chain (×6) with 9-dBm output power and 1.92% DC-to-RF efficiency in 0.13-µm SiGe BiCMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 7, pp. 2909–2919, 2023. doi: 10.1109/TMTT.2023.3238765
    [35]
    Z. G. Peng, J. J. Chen, H. Wang, et al., “A 208-GHz injection locking doubler chain with 3.2% PAE and 2.9-mW output power in CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 4, pp. 351–354, 2022. doi: 10.1109/LMWC.2021.3129545
    [36]
    H. P. Fu, K. Li, and K. X. Ma, “A 208–233-GHz frequency doubler with 1.1% power-added efficiency in 28-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1311–1314, 2022. doi: 10.1109/LMWC.2022.3180082
    [37]
    J. Y. Yu, J. X. Chen, P. G. Zhou, et al., “A 300-GHz transmitter front end with −4.1-dBm peak output power for sub-THz communication using 130-nm SiGe BiCMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4925–4936, 2021. doi: 10.1109/TMTT.2021.3103574
    [38]
    K. Z. Guo and P. Reynaert, “A 510-to-545 GHz radiating source with an SIW-based harmonic power extractor in 40-nm CMOS,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 3, pp. 245–256, 2022. doi: 10.1109/TTHZ.2022.3167012
    [39]
    J. V. Siles, K. B. Cooper, C. Lee, et al., “A new generation of room-temperature frequency-multiplied sources with up to 10× higher output power in the 160-GHz–1.6-THz range,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 6, pp. 596–604, 2018. doi: 10.1109/TTHZ.2018.2876620
    [40]
    Y. L. Tian, K. Huang, Y. He, et al., “A novel balanced frequency tripler with improved power capacity for submillimeter-wave application,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 8, pp. 925–928, 2021. doi: 10.1109/LMWC.2021.3084622
    [41]
    W. Kou, S. X. Liang, H. J. Zhou, et al., “A review of terahertz sources based on planar schottky diodes,” Chinese Journal of Electronics, vol. 31, no. 3, pp. 467–487, 2022. doi: 10.1049/cje.2021.00.302
    [42]
    H. M. Wei, J. T. Zhou, and Y. Zhang, “Design of a monolithic integrated high-efficiency 280 GHz frequency Tripler, ” in Proceedings of 2023 International Conference on Microwave and Millimeter Wave Technology, Qingdao, China, pp. 1–3, 2023.
    [43]
    X. B. Song, S. X. Liang, Y. J. Lv, et al., “GaN-based frequency doubler with pulsed output power over 1 W at 216 GHz,” IEEE Electron Device Letters, vol. 42, no. 12, pp. 1739–1742, 2021. doi: 10.1109/LED.2021.3119391
    [44]
    N. Erickson, “High efficiency submillimeter frequency multipliers, ” in Proceedings of the IEEE International Digest on Microwave Symposium, Dallas, TX, USA, pp. 1301–1304, 1990.
    [45]
    D. Moro-Melgar, O. Cojocari, and I. Oprea, “High power high efficiency 270-320 GHz source based on discrete schottky diodes, ” in Proceedings of the 15th European Radar Conference, Madrid, Spain, pp. 337–340, 2018.
    [46]
    D. Moro-Melgar, O. Cojocari, and I. Oprea, “High power high efficiency 475-520 GHz source based on discrete schottky diodes, ” in Proceedings of 2020 50th European Microwave Conference, Utrecht, Netherlands, pp. 607–610, 2021.
    [47]
    Y. Z. Dong, H. J. Liang, S. X. Liang, et al., “High-efficiency GaN frequency doubler based on thermal resistance analysis for continuous wave input,” IEEE Transactions on Electron Devices, vol. 70, no. 9, pp. 4565–4571, 2023. doi: 10.1109/TED.2023.3294897
    [48]
    Y. X. Zhang, W. F. Liang, C. Esposito, et al., “LO chain (×12) integrated 190-GHz low-power SiGe receiver with 49-dB conversion gain and 171-mW DC power consumption,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1943–1954, 2021. doi: 10.1109/TMTT.2020.3044095
    [49]
    C. Viegas, J. Powell, H. R. Liu, et al., “On-chip integrated backshort for relaxation of machining accuracy requirements in frequency multipliers,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 188–191, 2021. doi: 10.1109/LMWC.2020.3033440
    [50]
    L. D. Cohen, S. Nussbaum, E. Kraemer, et al. , “Varactor frequency doublers and triplers for the 200 to 300 GHz range, ” in Proceedings of 1975 IEEE-MTT-S International Microwave Symposium, Palo Alton, CA, USA, pp. 274–276, 1975.
    [51]
    A. I. Hadarig, S. Ver Hoeye, M. Fernández, et al., “330-500 GHz graphene-based single-stage high-order subharmonic mixer,” IEEE Access, vol. 7 pp. 113151–113160, 2019. doi: 10.1109/ACCESS.2019.2935310
    [52]
    H. R. Jeon, B. H. Yun, H. K. Lee, et al., “A 250-GHz wideband direct-conversion CMOS receiver adopting baseband equalized low-loss resistive passive mixer,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 70, no. 10, pp. 3852–3856, 2023. doi: 10.1109/TCSII.2023.3289215
    [53]
    V. S. Trinh, J. M. Song, and J. D. Park, “A 260–300-GHz mixer-first IQ receiver with fundamental LO driver in 130-nm SiGe process,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 4, pp. 435–438, 2023. doi: 10.1109/LMWT.2022.3228646
    [54]
    C. Guo, X. B. Shang, M. J. Lancaster, et al., “A 290–310 GHz single sideband mixer with integrated waveguide filters,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 4, pp. 446–454, 2018. doi: 10.1109/TTHZ.2018.2841771
    [55]
    A. Güner, T. Mausolf, J. Wessel, et al., “A 440–540-GHz subharmonic mixer in 130-nm SiGe BiCMOS,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 12, pp. 1161–1164, 2020. doi: 10.1109/LMWC.2020.3030315
    [56]
    B. Zhang, Y. Zhang, L. C. Pan, et al., “A 560 GHz sub-harmonic mixer using half-global design method,” Electronics, vol. 10, no. 3, article no. 234, 2021. doi: 10.3390/electronics10030234
    [57]
    Y. Liu, Z. Q. Niu, B. Zhang, et al., “A high-performance 330-GHz subharmonic mixer using schottky diodes,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 571–574, 2022. doi: 10.1109/LMWC.2022.3149378
    [58]
    G. Y. Ji, D. H. Zhang, J. Meng, et al., “A novel 183 GHz solid-state sub-harmonic mixer,” Electronics, vol. 9, no. 1, article no. 186, 2020. doi: 10.3390/electronics9010186
    [59]
    J. Zhou and X. Luo, “An 820-GHz down-converter with fourth subharmonic mixer in 40-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 10, pp. 1146–1149, 2021. doi: 10.1109/LMWC.2021.3105578
    [60]
    D. F. Ji, B. Zhang, J. L. Wang, et al., “Analysis of welding pad for terahertz hybrid integrated mixer,” IEEE Access, vol. 8 pp. 22506–22514, 2020. doi: 10.1109/ACCESS.2020.2968080
    [61]
    D. Pardo, B. N. Ellison, P. G. Huggard, et al. , “Development of techniques for the design of a 3.5 THz fundamental balanced schottky heterodyne mixer, ” in Proceedings of 2018 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, Brive La Gaillarde, France, pp. 1–3, 2018.
    [62]
    C. Vázquez Antuña, A. I. Hadarig, S. Ver Hoeye, et al., “High-order subharmonic millimeter-wave mixer based on few-layer graphene,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1361–1369, 2015. doi: 10.1109/TMTT.2015.2403854
    [63]
    H. X. Li, X. Gao, X. Y. Bu, et al., “The design methods and experiments for a 220-GHz quasi-optical cryogenic schottky subharmonic mixer of high performance,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 7, pp. 2897–2908, 2023. doi: 10.1109/TMTT.2023.3238814
    [64]
    A. A. Ibrahim, H. N. Shaman, and K. Sarabandi, “A sub-THz rectangular waveguide phase shifter using piezoelectric-based tunable artificial magnetic conductor,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 6, pp. 666–680, 2018. doi: 10.1109/TTHZ.2018.2866018
    [65]
    J. Yang, C. G. Cai, Z. P. Yin, et al. , “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°, ” IET Microwaves, Antennas & Propagation, vol. 12, no. 9, pp. 1466–1469, 2018.
    [66]
    P. V. Testa, C. Carta, and F. Ellinger, “A 140–210 GHz low-power vector-modulator phase shifter in 130nm SiGe BiCMOS technology, ” in Proceedings of 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, pp. 530–532, 2018.
    [67]
    Y. Z. Hu, T. Jiang, J. H. Zhou, et al., “Ultrafast terahertz frequency and phase tuning by all‐optical molecularization of metasurfaces,” Advanced Optical Materials, vol. 7, no. 22, article no. 1901050, 2019. doi: 10.1002/adom.201901050
    [68]
    P. V. Testa, C. Carta, and F. Ellinger, “A 160–190-GHz vector-modulator phase shifter for low-power applications,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 1, pp. 86–89, 2020. doi: 10.1109/LMWC.2019.2952766
    [69]
    X. H. Zhao, U. Shah, O. Glubokov, et al., “Micromachined subterahertz waveguide-integrated phase shifter utilizing supermode propagation,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3219–3227, 2021. doi: 10.1109/TMTT.2021.3076079
    [70]
    M. Pourmand and P. K. Choudhury, “Nanostructured strontium titanate perovskite hyperbolic metamaterial supported tunable broadband THz Brewster modulator,” IEEE Transactions on Nanotechnology, vol. 21 pp. 586–591, 2022. doi: 10.1109/TNANO.2022.3210111
    [71]
    D. Y. Ping, S. Gong, K. S. Ding, et al. , “A 140GHz terahertz amplitude direct modulator based on schottky diode, ” in Proceedings of 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves, Delft, Netherlands, pp. 1–2, 2022.
    [72]
    H. X. Zeng, S. Gong, L. Wang, et al., “A review of terahertz phase modulation from free space to guided wave integrated devices,” Nanophotonics, vol. 11, no. 3, pp. 415–437, 2022. doi: 10.1515/nanoph-2021-0623
    [73]
    G. Isić, G. Sinatkas, D. C. Zografopoulos, et al., “Electrically tunable metal–semiconductor–metal terahertz metasurface modulators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 3, article no. 8500108, 2019. doi: 10.1109/JSTQE.2019.2893762
    [74]
    H. X. Zeng, H. J. Liang, L. Wang, et al., “High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip,” Nature Photonics, vol. 15, no. 10, pp. 751–757, 2021. doi: 10.1038/s41566-021-00851-6
    [75]
    Y. C. Zhao, L. Wang, Y. X. Zhang, et al., “High-speed efficient terahertz modulation based on tunable collective-individual state conversion within an active 3 nm two-dimensional electron gas metasurface,” Nano Letters, vol. 19, no. 11, pp. 7588–7597, 2019. doi: 10.1021/acs.nanolett.9b01273
    [76]
    M. Z. Jiang, X. L. Xu, F. R. Hu, et al., “Low-voltage triggered VO2 hybrid metasurface used for amplitude modulation of terahertz orthogonal modes,” Journal of Lightwave Technology, vol. 40, no. 1, pp. 156–162, 2022. doi: 10.1109/JLT.2021.3120730
    [77]
    A. M. Zaman, Y. Z. Lu, X. Romain, et al., “Terahertz metamaterial optoelectronic modulators with GHz reconfiguration speed,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 5, pp. 520–526, 2022. doi: 10.1109/TTHZ.2022.3178875
    [78]
    M. H. Eissa and D. Kissinger, “4.5 A 13.5dBm fully integrated 200-to-255GHz power amplifier with a 4-way power combiner in SiGe: C BiCMOS, ” in Proceedings of 2019 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp. 82–84, 2019.
    [79]
    H. Hamada, T. Tsutsumi, A. Pander, et al., “220–325-GHz 25-dB-gain differential amplifier with high common-mode-rejection circuit in 60-nm InP-HEMT technology,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 709–712, 2021. doi: 10.1109/LMWC.2021.3061662
    [80]
    Z. Griffith, M. Urteaga, P. Rowell, et al., “A 150–175-GHz 30-dB S21 power amplifier with 125-mW Pout and 16.2% PAE using InP HBT,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 559–562, 2022. doi: 10.1109/LMWC.2021.3140029
    [81]
    X. C. Li, W. H. Chen, Y. F. Wang, et al. , “A 160 GHz high output power and high efficiency power amplifier in a 130-nm SiGe BiCMOS technology, ” in Proceedings of 2020 IEEE Radio Frequency Integrated Circuits Symposium, Los Angeles, CA, USA, pp. 199–202, 2020.
    [82]
    Z. Griffith, M. Urteaga, P. Rowell, et al. , “A 160-183 GHz 0.24-W (7.5% PAE) PA and 0.14-W (9.5% PAE) PA, high-gain, G-band power amplifier MMICs in 250-nm InP HBT, ” in Proceedings of 2020 IEEE/MTT-S International Microwave Symposium, Los Angeles, CA, USA, pp. 488–491, 2020.
    [83]
    A. S. H. Ahmed, U. Soylu, M. Seo, et al. , “A 190-210GHz power amplifier with 17.7-18.5dBm output power and 6.9-8.5% PAE, ” in Proceedings of 2021 IEEE MTT-S International Microwave Symposium, Atlanta, GA, USA, pp. 787–790, 2021.
    [84]
    J. Y. Yu, J. X. Chen, P. G. Zhou, et al., “A 211-to-263-GHz dual- LC-tank-based broadband power amplifier with 14.7-dBm PSAT and 16.4-dB peak gain in 130-nm SiGe BiCMOS,” IEEE Journal of Solid-State Circuits, vol. 58, no. 2, pp. 332–344, 2023. doi: 10.1109/JSSC.2022.3192043
    [85]
    Y. P. Chen, Y. Zhang, Y. Sun, et al., “A 220-GHz InP DHBT power amplifier with integrated planar spatial power combiner,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 225–227, 2019. doi: 10.1109/LMWC.2019.2891893
    [86]
    Z. K. Li, J. X. Chen, H. B. Li, et al., “A 220-GHz power amplifier with 22.5-dB gain and 9-dBm Psat in 130-nm SiGe,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 10, pp. 1166–1169, 2021. doi: 10.1109/LMWC.2021.3105611
    [87]
    H. B. Li, J. X. Chen, D. B. Hou, et al., “A 230-GHz SiGe amplifier with 21.8-dB gain and 3-dBm output power for sub-THz receivers,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 8, pp. 1004–1007, 2021. doi: 10.1109/LMWC.2021.3090466
    [88]
    T. Jyo, M. Nagatani, M. Ida, et al. , “A 241-GHz-bandwidth distributed amplifier with 10-dBm P1dB in 0.25-μm InP DHBT technology, ” in Proceedings of 2019 IEEE MTT-S International Microwave Symposium, Boston, MA, USA, pp. 1430–1433, 2019.
    [89]
    X. C. Li, W. H. Chen, P. G. Zhou, et al., “A 250–310 GHz Power amplifier with 15-dB peak gain in 130-nm SiGe BiCMOS process for terahertz wireless system,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 1, pp. 1–12, 2022. doi: 10.1109/TTHZ.2021.3099057
    [90]
    X. X. Tian, N. X. Zhu, Z. H. Liu, et al. , “A compact 210-to-250 GHz quad-stacked power amplifier in 0.13-μm SiGe BiCMOS, ” in Proceedings of 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, Guangzhou, China, pp. 1–3, 2022.
    [91]
    B. Zhang, Y. Zhang, Z. Dang, et al. , “A compact and high-efficiency 220-GHz power amplifier module based on TE11-mode radial power combiner, ” IEEE Transactions on Microwave Theory and Techniques, in press, 2023.
    [92]
    X. C. Li, W. H. Chen, S. Y. Li, et al., “A high-efficiency 142–182-GHz SiGe BiCMOS power amplifier with broadband slotline-based power combining technique,” IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 371–384, 2022. doi: 10.1109/JSSC.2021.3107428
    [93]
    J. S. C. Chien, W. Lee, and J. F. Buckwalter, “High-efficiency 200-GHz neutralized common-base power amplifiers in 250-nm InP HBT,” IEEE Journal of Microwaves, vol. 3, no. 2, pp. 715–725, 2023. doi: 10.1109/JMW.2023.3249203
    [94]
    P. Stärke, C. Carta, and F. Ellinger, “High-linearity 19-dB power amplifier for 140–220 GHz, saturated at 15 dBm, in 130-nm SiGe,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 4, pp. 403–406, 2020. doi: 10.1109/LMWC.2020.2978397
    [95]
    J. Romstadt, V. Lammert, N. Pohl, et al. , “Transformer-coupled D-band PA with 11.8 dbm Psat and 6.3 % PAE in 0.13μm SiGe BiCMOS, ” in Proceedings of 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Antonio, TX, USA, pp. 77–80, 2020.
    [96]
    C. M. Cooke, K. Leong, A. Escorcia, et al. , “A 220 GHz dual channel LNA front-end for a direct detection polarimetric receiver, ” in Proceedings of 2019 IEEE MTT-S International Microwave Symposium, Boston, MA, USA, pp. 508–511, 2019.
    [97]
    H. B. Li, J. X. Chen, D. B. Hou, et al., “A 250-GHz differential SiGe amplifier with 21.5-dB gain for sub-THz transmitters,” IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 6, pp. 624–633, 2020. doi: 10.1109/TTHZ.2020.3019361
    [98]
    B. Yun, D. W. Park, H. U. Mahmood, et al., “A D-band high-gain and low-power LNA in 65-nm CMOS by adopting simultaneous noise- and input-matched Gmax -core,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2519–2530, 2021. doi: 10.1109/TMTT.2021.3066972
    [99]
    N. Landsberg, O. Asaf, and W. Shin, “A D-band LNA using a 22 nm FD-SOI CMOS technology for radar applications, ” in Proceedings of 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, Tel Aviv, Israel, pp. 178–180, 2021.
    [100]
    V. Chauhan, N. Collaert, and P. Wambacq, “A 120–140-GHz LNA in 250-nm InP HBT,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1315–1318, 2022. doi: 10.1109/LMWC.2022.3189607
    [101]
    A. Gadallah, M. H. Eissa, T. Mausolf, et al., “A 300-GHz low-noise amplifier in 130-nm SiGe SG13G3 technology,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 4, pp. 331–334, 2022. doi: 10.1109/LMWC.2021.3128762
    [102]
    S. P. Singh, T. Rahkonen, M. E. Leinonen, et al., “Design aspects of single-ended and differential SiGe low-noise amplifiers operating above fmax/2in sub-THz/THz frequencies,” IEEE Journal of Solid-State Circuits, vol. 58, no. 9, pp. 2478–2488, 2023. doi: 10.1109/JSSC.2023.3264475
    [103]
    P. Stärke, C. Carta, and F. Ellinger, “180 GHz HBT MMIC amplifier with 80 GHz bandwidth and low noise figure in 250 nm InP, ” in Proceedings of 2019 European Microwave Conference in Central Europe, Prague, Czech Republic, pp. 99–102, 2019.
    [104]
    Y. K. Li, Y. Zhang, C. K. Wu, et al., “A 16-QAM 45-Gbps 7-m wireless link using InP HEMT LNA and GaAs SBD mixers at 220-GHz-band,” China Communications, vol. 18, no. 5, pp. 255–262, 2021. doi: 10.23919/JCC.2021.05.016
    [105]
    H. S. Chen and J. Y. C. Liu, “A 180-GHz low-noise amplifier with recursive Z-embedding technique in 40-nm CMOS,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 69, no. 12, pp. 4649–4653, 2022. doi: 10.1109/TCSII.2022.3181702
    [106]
    D. D. Yang, J. C. Wen, M. L. He, et al. , “A D-band monolithic low noise amplifier on InP HEMT technology, ” in Proceedings of 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, pp. 1–4, 2018.
    [107]
    Z. C. Xu, Q. Xie, and Z. Wang, “A study of collaborative gain/noise optimization for LNAs at near- frequencies based on a novel gain-noise plane approach,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 70, no. 1, pp. 51–55, 2023. doi: 10.1109/TCSII.2022.3204325
    [108]
    S. P. Singh, T. Rahkonen, M. E. Leinonen, et al. , “Design aspects of single-ended and differential SiGe low-noise amplifiers operating above fmax/2in sub-THz/THz frequencies, ” IEEE Journal of Solid-State Circuits, vol. 58, no. 9, pp. 2478–2488, 2023. (查阅网上资料,本条文献与第102条文献重复,请确认) .

    S. P. Singh, T. Rahkonen, M. E. Leinonen, et al. , “Design aspects of single-ended and differential SiGe low-noise amplifiers operating above fmax/2in sub-THz/THz frequencies, ” IEEE Journal of Solid-State Circuits, vol. 58, no. 9, pp. 2478–2488, 2023. (查阅网上资料,本条文献与第102条文献重复,请确认).
    [109]
    A. Karakuzulu, M. H. Eissa, D. Kissinger, et al., “Full D-band transmit–receive module for phased array systems in 130-nm SiGe BiCMOS,” IEEE Solid-State Circuits Letters, vol. 4 pp. 40–43, 2021. doi: 10.1109/LSSC.2021.3054512
    [110]
    M. Hossain, R. Doerner, H. Yacoub, et al. , “Highly linear D-band low-noise amplifier with 8.5dB noise figure in InP-DHBT technology, ” in Proceedings of 2021 16th European Microwave Integrated Circuits Conference, London, United Kingdom, pp. 140–143, 2022.
    [111]
    C. C. Renaud, M. Natrella, C. Graham, et al., “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, article no. 8500111, 2018. doi: 10.1109/JSTQE.2017.2725444
    [112]
    M. Che, K. Kondo, H. Kanaya, et al., “Arrayed photomixers for THz beam-combining and beam-steering,” Journal of Lightwave Technology, vol. 40, no. 20, pp. 6657–6665, 2022. doi: 10.1109/JLT.2022.3204113
    [113]
    L. Zhao, Y. T. Li, C. W. Liu, et al. , “Demonstration of 470 GHz bandwidth wireless transmitter based on photo-mixer for simultaneous transmission of photonics-generated signals in all-band 6G systems, ” in Proceedings of the Optical Fiber Communication Conference (OFC) 2021, Washington, DC, USA, article no. M3J. 2, 2021.
    [114]
    Y. J. Lin and M. Jarrahi, “Heterodyne terahertz detection through electronic and optoelectronic mixers,” Reports on Progress in Physics, vol. 83, no. 6, article no. 066101, 2020. doi: 10.1088/1361-6633/ab82f6
    [115]
    G. Zhou, P. Runge, S. Keyvaninia, et al., “High-power InP-based waveguide integrated modified uni-traveling-carrier photodiodes,” Journal of Lightwave Technology, vol. 35, no. 4, pp. 717–721, 2017. doi: 10.1109/JLT.2016.2591266
    [116]
    S. H. Yang and M. Jarrahi, “Navigating terahertz spectrum via photomixing,” Optics and Photonics News, vol. 31, no. 7, pp. 36–43, 2020. doi: 10.1364/OPN.31.7.000036
    [117]
    H. Ito and T. Ishibashi, “Photonic terahertz-wave generation using slot-antenna-integrated uni-traveling-carrier photodiodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 4, article no. 3800907, 2017. doi: 10.1109/JSTQE.2017.2657678
    [118]
    H. Ito, “Photonic THz-wave generation by UTC-PD and its related device, ” in Proceedings of 2016 Progress in Electromagnetic Research Symposium, Shanghai, China, pp. 3904–3904, 2016.
    [119]
    X. B. Yu, H. Q. Zhang, Z. M. Yang, et al. , “Photonic-wireless communication and sensing in the terahertz band, ” in Proceedings of the Optical Fiber Communication Conference (OFC) 2023, San Diego, CA, USA, article no. W4J. 1, 2023.
    [120]
    E. Rouvalis, C. C. Renaud, D. G. Moodie, et al., “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Optics Express, vol. 18, no. 11, pp. 11105–11110, 2010. doi: 10.1364/OE.18.011105
    [121]
    T. Ishibashi, N. Shimizu, S. Kodama, et al. , “Uni-traveling-carrier photodiodes, ” in Proceedings of the Ultrafast Electronics and Optoelectronics, Incline Village, NV, USA, article no. UC3, 1997.
    [122]
    H. J. Song, K. Ajito, Y. Muramoto, et al., “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 7, pp. 363–365, 2012. doi: 10.1109/LMWC.2012.2201460
    [123]
    Y. Omori, T. Hosotani, T. Otsuji, et al. , “UTC-PD-integrated HEMT for optical-to-millimeter-wave carrier frequency down-conversion, ” in Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, article no. Th3B. 5, 2019.
    [124]
    J. Kim, E. S. Lee, J. Cho, et al. , “Waveguide packaged UTC-PD module for terahertz applications, ” in Proceedings of SPIE PC12000, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XV, San Francisco, CA, United States, article no. PC1200007, 2022.
    [125]
    T. Harter, M. Weber, S. Muehlbrandt, et al. , “Wireless THz communications using optoelectronic techniques for signal generation and coherent reception, ” in Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, article no. SM3J. 2, 2017.
    [126]
    D. Nakajima, K. Nishimura, M. Watanabe, et al. , “Conversion gain enhancement of a UTC-PD-integrated HEMT photonic double-mixer by high-intensity optical subcarrier signal, ” in Proceedings of the Optical Fiber Communication Conference (OFC) 2023, San Diego CA, USA, article no. M3D. 7, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(9)

    Article Metrics

    Article views (120) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return