Citation: | LANG Rongling, SU Zhen, ZHOU Kai, et al., “A Robust Signal Driven Method for GNSS Signals Interference Detection,” Chinese Journal of Electronics, vol. 27, no. 2, pp. 422-427, 2018, doi: 10.1049/cje.2018.01.018 |
S. W. Gilmore and W. Delaney, "Jamming of GPS receivers:A stylized analysis", Project Report, Lincoln Laboratory, 1994.
|
A.T. Balaei and A.G. Dempster, "A statistical interference technique for GPS interference detection", IEEE Transactions on Aerospace and Electronic, Vol.45, No.4, pp.1499-1511, 2009.
|
P. Ndili and A. Enge, "GPS receiver autonomous interference detection", IEEE Position Location Nav. Symp., Vol.23, No.3, pp.123-130, 1988.
|
P. T. Capozza, B. J. Holland, T. M. Hopkinson, et al., "Measured effects of a narrowband interference suppressor on GPS receivers", Proc. of Proceedings of Annual Meeting of The Institute of Navigation, Cambridge, MA, USA, pp.645-651, 1999.
|
L. Marti and F. van Graas, "Bias detection and its confidence assessment in global positioning system signals", IEEE Aerospace Conference, Vol.3, pp.1608-1617, 2004.
|
A. Tani and R. Fantacci, "Performance evaluation of a precorrelation interference detection algorithm for the GNSS based on nonparametrical spectral estimation", IEEE Systems Journal, Vol.2, No.1, pp. 20-26, 2008.
|
D. Borio, L. Camoriano, S. Savasta, et al., "Time-frequency excision for GNSS applications", IEEE Systems Journal, Vol.2, No.1, pp.27-37, 2008.
|
F. Faurie and A. Giremus, "Bayesian detection of interference in satellite navigation systems", Acoustics, IEEE International Conference on Speech and Signal Processing, pp.4348-4351, 2011.
|
N.Y. Deng and Y.J. Tian, A New Method of Data Mining:Support Vector Machine, Science Press, Beijing, China, 2004.
|
B. Baesens, Vanthienen and J. Baesens, "Benchmarking stateof-the-art classification algorithms for credit scoring", Journal of the Operational Research Society, Vol.54, No.6, pp.627-635, 2003.
|
H. Frigui and R. Krishnapuram, "Clustering by competitive agglomeration", Pattern Recognition, Vol.30, No.7, pp.1109-1119, 1997.
|
R.L. Lang and X.L. Deng, "The heuristic algorithms for selecting the parameters of support vector machine for classification", Chinese Journal of Electronics, Vol.21, No.3, pp.485-488, 2012.
|
H. Frigui and R. Krishnapuram, "A robust competitive clustering algorithm with applications in computer vision", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.5, pp.450-465, 1999.
|
F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, et al., Robust Statistics:The Approach Based on Influence Functions, John Wiley & Sons, NewYork, USA, 1986.
|